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Abstract

This report develops a scoring or, equivalently, validation

procedure for those multiple target correlator-trackers which, in
0

effect, form a partitionimg Q ofv~ccumulated data Z from multiple
sensor sources into disjoint track sets and a possible false alarm
set. The accumulated data may involve missed detections, false
alarms, and may describe, typically, measured target positions,

velocities, or various target attributes, such as hull length or
even identification. One such score, J, for a given correlator-
tracker is defined to be J(Q,Z) = -2 log pr(QIZ), a form related
to the posterior distribution function of partitionings of data.
Use of J as a measure can be justified from both information and
decision theoretic viewpoints. In particular, minimal J is
achieved by the posterior maximum likelihood estimator of Q.

0 0,

E(Q,z)IQ), a measure of cross entropy, is minimized among constant
S 00

partitionings by Q = Q. A closely related score J'(Q,Z) = -2 logo

Pr(zIQ) has similar properties to J and is computationally more
convenient. The emphasis of this report is on J%

When a linear Gauss-Markov tracking and observation model is

assumed, and false alarms and attribute information are modelled by
Gaussian processes, J- is shown to be a sum of relatively simple

o 0

computable terms. The distribution of (J(Q,Z) 1Q) under the above
assumptions is that of a chi-square random variable plus a constant.
Thus, J, is a natural measure of the goodness of fit of a correlator-
tracker's output to the data it is operating on.

Several correlator-trackers can be ordered with respect to overall
relative'accuracy through use of their scores in a weighted sense -
depending on the prior decision probabilities and the decision costs
involved. However, it is also shown that type I and ty-pe II decision
errors are difficult to compute, since distributions involving

• 00
((J-(Q, Z) - J,(Q,Z)) IQ) apparently cannot be obtained in simple
form, in general.
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INTRODUCTION

This report is the first part of a two part study concerning

performance measures and scoring procedures for the multiple

target, multiple sensor correlation problem. In this document~a

methodology is developed for determining how well the outputs -

in the form of partitionings of the data - of a given correlator-

tracker match the actual track sets and false alarms that are

present. 'In the second part of the study, numerical examples

will be presented for simulated real-world situations, including

ocean surface and subsurface scenarios. These examples should

both illustrate the potential use of the scoring procedures

developed here, and lead to various sensitivity analyses. In the

latter, trade-offs are expected to be established between a number

of quantities of interest, including, background shipping densities;

types of evasive target motions and group formations; number of

(true) targets of interest; false alarm rates; incoming sensor

measurement rates; averaged measurement errors; and correlation-

tracker design - illustrated, e.g., by the number of, or average

length of, track sets formed.

The study is part of the on-going Correlation Handbook Project

at the Naval Research Laboratory (Code 7932), under the aegis of

NAVELEX. The results of this report extend and supersede much of

the earlier work presented in Ref. [1].

A performance (or validity) measure of a given correlator-

tracker determines - through its numerical outcomes - how well the

outputs of that correlator-tracker estimate the true target -

false alarm situation, through its partitioning of the observed

data into track sets.
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The purpose of this report is to present a scalar perfor-

mance measure which: is applicable to a wide class of correlator-

trackers; is relatively simple in form, suitable for real world

operational implementations for use in ocean surface, subsurface,

air, or ground surveillance, or in any combination of these

scenarios; and is justified by a mathematical-logical basis.

(For additional explanation of terms used here, see the

following section.)

The correlator-trackers treated here operate on data, re-

ceived by possibly several sensor systems, which is in the form

of reports that may, unknown to the observer, represent targets of

interest or false alarms. The class of sensor systems considered

is general and is essentially only limited by the restriction that

the time and sensor source of each report be known. Reports may

contain: (1) geolocation target or false alarm measurements, such

as observed positions or velocities, which typically come from

bearing, range, and related sensors; and/or (2) possible non-

geolocation target attribute information, such as observations of

hull length, number of sensors on-board, emitted frequency infor-

mation, which usually arise from intelligence sources, visual

sightings, acoustic sensors, etc., in conjuction with (1).

One candidate performance measure is J, the negative log

posterior distribution of data partionings evaluated at that par-

titioning characterizing the correlator-tracker, at hand. A closely

related measure is J', the negative log conditional distribu-

tion of the observed data, conditioned on the partitioning. JA

is shown to have a much simpler form than J. If no prior know-

ledge is available conerning what the true partioning of data is,

then a uniform distribution assumption lends to J and J' dif-
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fering by a function of the data only - and not of any partitionings.

In this case, all of the theoretical justifications for J equally

apply to Jo. The bulk of this report concerns the evaluation

and presentation of the properties of J'.

J' can be expressed as the sum of three submeasures;

Evaluation of J' involves computing Kalman filters for the

various track sets of the correlator-tracker, resulting in a sub-

measure of goodness of fit of the tracks. Another submeasure

computes the plausibility of the false alarm set determined by the

correlator-tracker. A third submeasure determines the goodness of fit

of the target attribute data at hand (such as observed ship identi-

fications, frequencies received, hull lengths observed, etc.1.

These submeasures, from their relatively simple structures, are

expected to be implementable for real time incoming data, recur-

sively in many instances.

In order to properly determine J, Kalman filter outputs

of the correlator-tracker being evaluated may have to be disre-

garded and replaced by the specially structured Kalman filters

used for J'. This in general is due to either or both of the fol-

lowing two factors being present:

1) The correlator-tracker at hand may in its own opera-

tional form be using an adaptive extended - or in some way non

linear-Gauss-Markov target motion and measurement models. In this

case, present or relatively recent target positions, e.g., will

be more accurately estimated than previous ones, and correlation

errors can actually be worse than for non-adaptive filters. In any

case, sums of the apparent quadratic forms of data fit do not really

represent the fit of the entire track set to the data.

2) Targets may be maneuvering so that the linear-Gauss-Markov

target motion assumptions become invalid.

Appendix C exhibits detailed flow charts for computations re-
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n trmi, -v particular

numerical examples given in Appendix D.

BACKGROUND

In brief, the correlation problem considered here may be de-

fined as follows: Determine, within feasible computational bounds,

that partitioning of the observed data set, which most accurately

reflects through its component track sets, the true (but unknown

to the observer) partitioning. In the correlation problem consi-

dered here, data is accumulated in the form of vector valued reports,

labeled as to sensor system source and time, accumulated over some

specified sampling interval. The component sets of the partition-

ing represent either track sets, each corresponding to a single

target source (estimated, if the partitioning itself is an estimate

of the true partitioning), or the false alarm (or clutter) set.

(The latter may be vacuous.) The observed data vectors may be

classified into two categories: geolocational and non-geolocational

attributes. For any given time and sensor system it is possible

that either of these types of data vectors may be vacuous. For the

geolocational case this may be due to missed detections; however,

generally when geolocation information is not missing, the number

of components in the data vector will be fixed and typically in-

cludes positional and/or velocity observations. False alarms may

be mixed into this data. For the non-geolocation case, the number

of components and type of information available in a given data

vector is random. Typically, non-geolocation target attributes can

include any subset of the following: sighting of ship identifica-

tion, observed ship silhouette/shape, estimated hull length, ob-

served flag color, number of sensors of a given type detected to

be on-board vessel, and ship machinery frequency outputs observed.

Broadly speaking, correlator-trackers, i.e., schemes which

first establish partitions of the data and then use these, in turn,

4



to establish tracks of the targets, may be divided into two classes:

'soft decision' and 'hard decision' types. The former, basically

* establish posterior distributions or sets of possible partitions

to be considered, generate weights based on the likelihoods or

similar measures of the possible partitions, and then estimate target

motion parameters through weighted sums of Kalman filters. (See,

e.g., Ref. 12]). On the other hand, hard decision correlator-

trackers may be identified with a single partitioning of the data;

"the estimated target motion parameters being determined by a Kalman

filter for each component track set of the partitioning. (See Ref. [3].)

In this report, only those correlator-tracker schemes are

considered which can be identified with a single partitioning of

the accumulated data, for each sample time. Thus, this includes

all hard decision correlator-trackers and those soft decision ones

which can be suitably modified, such as by choosing that partition-

ing of the data which maximizes the posterior distribution of

possible partitionings, or some related statistic.

Extensive overviews and general analyses of the multiple tar-

get multiple sensor correlation problem may be found in NRL's

Correlation Handbook [4]; see also the earlier work of Kullback and

Owens [5]. General models for the problem are presented in Sittler

[6], Reid (2] and Goodman [7]. Bar Shalom (8] and Goodman [7]

Chapter 12 also contain technically detailed surveys of various

correlator-tracker schemes, with a number of examples presented

for both the hard and soft decision cases.

STATEMENT OF THE PROBLEM - PERFORMANCE MEASURES

Consider the problem of determining how well a particular

correlator-tracker technique works. It is obvious that if target

density or false alarm rates are sufficiently high, even with very

accurate sensing systems present, no correlator-tracker will
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perform well. Other factors also contribute to correlation diffi-

culties, such as sensor reliability, data rates and variable types

of target motion, including maneuvers. Despite the above negative

remarks, there appear to be many occasions (moderate data rate

with few targets and false alarms present, e.g.) when the correlation

problem may be amenable to reasonably accurate solutions. In

these situations, an analytically based performance measure can

serve as a valuable tool for ranking and comparing quantitatively

different approaches.

Due to the possible combinations of many factors - including

target initialization and termination times within the sensor areas

of interest, detection failures, variable target motions and

maneuverings and matching of non-geolocation attribute information

to the correct track sets - a large number of possible partition-

ings of the data into track sets can occur. This, in turn, can

lead to an exponential growth - with respect to sampling time - of

the number of computations required in implementing or monitoring

error bound performance of correlator-trackers, even under very

simplistic model assumptions. (See, e.g. Theorem 4 of the abridged

version of Ref. [7] for an example of exponential growth in the

number computations needed to compute target motion parameters,

See also Ref. [1J.) Thus, alternative performance measures must

be sought which do not involve such a large amount of computations,

Performance measures, or, as they are often called MOE's

(measures of effectiveness) can be roughly divided into two basic

classes: (1) observerdependent only and C2) simulator-observer

dependent.
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A performance measure is defined to be observer-dependent only,

if it is a true statistic, i.e., known function, of the cumulative

data and the partitioning determined by the correlator-tracker in

question.

On the other hand, a performance measure may depend in imple-

mentation on knowledge of what data constitutes the true track sets

and/or false alarms, i.e., on the true partitioning of the data.

The measure may further depend on knowledge of the correct target

motion parameter vectors such as positions, and correct time of

initialization and termination of the targets from the region being

surveilled. In this case, the performance measure is said to be

.simulator-observer dependent.

In general, an observer dependent only performance measure,

or briefly, score, is evaluated relative to its statistical dis-

tribution as a random quantity (based on the random data), or at

least relative to its statistical moments, conditioned on an assumed

true situation (i.e., true partitioning of data or even true tar-

get motion parameters). These statistical moments, are thus

simulator-observer performance measures generated by the score.

Some examples of scores are: average observed track depth

or persistance; number of tracks exceeding a depth of three sample

times; and number of tentative tracks, i.e., track sets having no

more than a prescribed upper bound on track depth (e.g., two).

(See, e.g., References [9] and [10].) Another measure that is

observer dependent only is consistancy of performance (see (10]).

The latter measure describes how much difference exists between
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the initial filtered-partitioned output data from a given

correlator-tracker and a second output resulting from recycling

the initial output through the same correlator-tracker (by using

it formally as raw input data). (See also Ref. [1] pages 6 and

7 for further mathematical details.)

Simulator-observer dependent measures of performance are

much more plentiful in the literature of correlator-trackers and

related algorithms than those in the former class. Wiener et al.

(111 present a number of examples of these measures, as well as a

general overview of the rule MOE's in general play in the command

and control aspects of ocean surveillance. (See also the overviews

in (123 and [133.) Typical measures here include all measures of

accuracy of target motion parameter estimators, thus, e.g., esti-

mated coverage probabilities of target parameters; track purity,

i.e., percentage of correct elements in any given track set; prob-

ability of correct association between new reports and previous

established tracks, and percentage of targets having track depths

of given lengths. Most of the above measures may be averaged with

respect to sampling times and number of targets present.

This section is concluded with a brief overview of the litera-

ture of simulator-observer dependent MOE's.

Among the measures Willman [93 uses for evaluating the per-

formance of his hard decision 'matrix scan' correlator-tracker are

four involving actual and estimated track depths (the latter obtained

through estimated probabilities of consecutive track linkages).

In addition, Willman employs: a measure which is formally the same.

as the determinant of a corresponding two-by-two table of entries;
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percentage of old targets having established tracks lacking new

assignment of reports; and percentage of misassigned reports.

Kullback and Owens ([5], pp. 31-42) consider numerical dif-

ferences between the number of targets and false alarms estimated

and actually present, as well as track purity. In addition, use

of non-geolocation attributes by a correlator-tracker is proposed

to be measured by an ambiguity function which counts the total

number of possible ships in the area which could fit those attri-

butes assigned to each track set. Other measures are discussed which

measure the information level of correlator-trackers.

Adler et al. [14] have proposed a number of interesting MOE's,

including the rate of track fragments (interruptions in tracking

the same targets) and average time between correct correlations (or

linkages) of old tracks to newly arriving reports. Turner and

Marder [15], in addition to the usual measures, use as a measure

the number of observations required of a target to form a firm

track. Reid [2] proposes (in addition to percentage of targets

tracked, lost, etc.) the average number of partitionings of data

kept, following pruning and merging, according to (his soft decision)

correlator-tracker. (See also the MOE's presented in References

[16] - [18].) The performances of the large scale correlator-

tracker presented in [19] (resulting in various model improvements -

Personal Correspondence) were measured by a number of MOE's pre-

viously mentioned, including track purity, accuracies of estimators,

and the number of tracks sets having relatively short depths.

Observer dependent measures are presented in greater detail

9



in the next section.

OBSERVER DEPENDENT PERFORMANCE MEASURES - SCORES

As mentioned in the previous section, many measures of per-

formance exist, but in effect they form a patchwork quilt of

descriptions for the behavior of correlator-trackers in general.

Alspach and Lobbia (201 construct an observer dependent only

performance measure, which operates on a correlator-tracker's

perceived data partitioning only through the total number of re-

ports assigned to track sets and the total number of reports

assigned to the false alarm set. The statistical expectation of

the evaluation of this measure (with respect to the randomness of

the data) holding the number of track reports and false alarms

fixed, is also a performance measure which is both observer and

simulator dependent. This is shown to be a concave unimodal

function (under certain simplifying assumptions) of the total num-

ber of reports assigned to track sets. This function is seen to

be a linear function when the number of reports assigned to track

sets is less than or equal to the true number of reports that

should be assigned (via the true partitioning) to the track sets,

and possesses an absolute minimum when the number of reports decided

to be targets is equal to the number of actual targets.

In this report a score J' is proposed which is expected to

be relatively feasible to implement: (twice) the negative logarithm of

the conditional probability function of the possible data parti-

tionings, evaluated at that partitioning determining the correlator-

tracker to be evaluated. An associated simulator-observer dependent
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performance measure (I) is also presented. This measure is

essentially the statistical expectation of J- conditioned on any

given true partitioning of data, a cross entropy measure.

Although Alspach and Lobbia [20] briefly discuss the possible

use of a statistic related to the one proposed here (but do not

consider non-geolocation attributes), they dismiss use of it be-

cause of apparent difficulties in determining the non-random terms

consisting of determinants of innovation covariance matrices. In

effect, in Alspach and Lobbia's score, the non-random terms are re-

placed by the product of the number of data points decided to be

clutter or false alarms employing undetermined constant scores for

any single point decided to be clutter.

In Reference [21] and [3] (the former treating data recursively

in time, the latter handling data non-recursively), new reports are

assigned to those track sets and to the false alarm set such that

performance measures which are modifications of the log likelihood

of possible partitions - a statistic related in form to that pro-

posed in this report - are maximized (or minimized). (See Ref.

[8] for concise descriptions of other correlation techniques which,

in effect, also use performance measures for determining imple-

mentations.)

The motivation of the choice of the negative log conditional

or posterior probability functions of possible partitionings

as a measure of a correlator-tracker's performance is based on

five desirable properties:

1. The measure in its initial form (before taking expectations

11



with respect to the data) is truly observer-dependent only, and

may thus be used as a real world scoring method.

2. The score is relatively simple in form, or can be

reasonably approximated by a simple structure, suitable for real-

time implementations.

3. The score directly reflects the goodness-of-fit of the

partitioning of the correlator-tracker in question to the given

data, employing geolocation terms, non-geolocation attributes and

false alarm data.

4. The statistical distribution of the score is related to

a chi-square random variable.

5. Use of the score can be justified from information theory

and statistical decision theory viewpoints.

The statistical expectation of the score is observer-simulator

dependent and can also be used as a measure of performance. In

particular, the expectation of the measure will have smaller values,

generally, for correlator-trackers which use more information and/or

have lower risks (equivalently, better approximate the Bayes or

maximal posterior data partitioning).

The above five properties may well serve as a general guide-

line for establishing performance measures for correlator-trackers.

12



OUTLINE OF THE REPORT

The introductory sections describe the correlation problem,

in general, and performance measures, in particular. 'Hard' vs.

'soft' types of correlator-trackers are detailed; the former being

more conducive for being evaluated by the performance measures J

and J' presented in this report. J is essentially the negative

log posterior distribution function evaluated at that partitioning

Q of data characterizing the given correlator-tracker, while J,

is a related more computationally simpler measure involving the

conditional distribution of the data (conditioned on Q). Surveys

of the available literature for both observer dependent (J and J'

are in this class) and simulator-dependent performance measures are

presented. Relations between these measures and the ones proposed

in this report, where applicable, are described. A guideline is

presented for desirable properties that any performance measure

for correlator-trackers should possess. (J' satisfies these criteria.)

The Analysis Section first establishes (subsection 2) com-

prehensive definitions and mathematical models for all assumed tar-

get motions (eq. (2.1)),occurrence and location of false alarms

(subsections 2((3)), ((6))),and observation measurements (eq. (2.2)).

Following this, statistical decision theory and information theory

bases are established for use of the proposed scores (subsection 3).

In essence, it is shown that the lower the value of J or J', the

closer the correlator-tracker (through its partitioning of the data)

matches the true but unknown partitioning of the data into the cor-

rect track sets and false alarm set.

The next subsection (4) of the Analysis Section develops the
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full structure of the simpler performance measure J-. This leads

to a decomposition of J, into a sum of three terms, reflecting

goodness-of-data-fit to the partitioning determined by a given

correlator-tracker (eq. (4.1)). The geolocation target data term

is shown to be the sum of constant and quadratic forms of innova-

tions that are outputs from Kalman filters (eqs. (4.2) - (4.51)1.

The (geolocation) false alarm term is the sum of constant and

quadratic forms of data (eq. (4.52)- (4.61)). Both terms are seen

to depend explicitly on the number of targets and false alarms

perceived by the correlator-tracker. The non-geolocation target

attribute term involves discrete sums of probabilities (eqs. (4,62) -

(4.70)). If a normal approximation is made in the modeling of

these attributes (see remarks following eq. (4.70)) then a Kalman

filter (eqs. (.4.114) - (4.127)) may be used for evaluation of this

term: a constant plus quadratic forms of the data. (See eqs.

(4.63), (4.64), (4.68), (.4.69), (4.79)- (4.82).) A further simpli-

fying approximation - which avoids basically prior knowledge of the

randomness of the non-geolocation characteristics is given in

Appendix B; in addition the accuracy of this approximation is also

demonstrated.

The final subsection (5) of the Analysis Section develops the

distributional properties of J. It is shown that J, conditioned

on the partitioning determining the correlator-tracker being evaluated,

is distributed as the statistical independent sum of a constant,

a chi-squared random variable, and a discrete random variable (see

eqs. (5.1)- (5.5)). Under normal distributional approximations

for the non-geolocation attributes, the above discrete random

14



variable is replaced by the sum of a constant and a chi-squared

random variable (see remarks following eq. (5.5).) It follows

in this case that J is distributed as the sum ot a constant and

a chi-squared random variable (eqs. (5.6)- (5.9)). It is also

shown that JV conditioned on a partitioning of data not coinciding

with the one determining the correlator-tracker being evaluated,

has a distribution which is not easily computable (not even a non-

central chi-square distribution). (See equations and remarks fol-

lowing eq. (5.9).)

Appendix A presents a procedure for calculating matrix in-

verses in prescribed block form. This can be useful in evaluating

parts of the Kalman filters used in the computations for the geo-

location targets and non-geolocation attributes terms (assuming a

normal approximation).

A further approximation to a quadratic form arising from

normal distributional approximations for the non-geolocation attri-

butes is presented in Appendix B, where also error bounds are

derived. Use of this approximation minimizes required prior know-

ledge of the randomness of the true non-geolocation attributes of

the targets.

A complete set of flow charts for computing J relative to

incoming data is presented in Appendix C.
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ANALYSIS

1. INTRODUCTION

In order to be able to define and analyze consistantly the

performance measures proposed here, a rigorous mathematical - logical

model is established for the general correlation-tracking problem.

(This largely simplifies the model proposed in Ref. 17].) This

model consists of eight key aspects: ((l)) sensor systems, ((2))

target initializations and terminations, ((3)) existance of target

state parameter vectors and detection, ((4)) partitionings of

observed data, ((5)) target state parameter vectors, ((6)) observed

geolocation data, ((7)) non-geolocation attribute data, and ((8))

total observed data.

Although the model obviously simplifies the real-world situa-

tion, it is expected that its constituent assumptions are

'reasonable' approximations of reality. In keeping with the attempt

to be as faithful as possible to the real world setting, the model

established represents a relatively short data sampling period,

J0' and can be changed with respect to each new sampling period;

all of the available output information from the previous sampling

period, being used as input - prior information for the next period.

This disjointing of the sampling times into short segments should

make more valid the homogeneous linear Gauss-Markov motion and measure-

ment models used in ((5)) and ((6)). The latter assumption can

account to some degree for variations in types of target motion by

allowing in the model a reasonably large state vector dimension

with zeros possibly occurring in particular entries. (Thus,

quadratic polynomial motion includes as a special case, straight

16



line motion, with the possibility of estimated error covariances

being actually larger than necessary.) This results in the avoid-

ance of a potentially large branching problem that can arise in

attempting to model the general correlation-tracking problem.

(See, e.g. Goodman [71, especially Theorems 4 and 5 of the abridged

version for an illustration of the complexity arising when variable

target motions and maneuvers are modeled.)

Even over a relatively short sampling period, a target may

engage in maneuvering - such as zig-zags or circular motion - which

is not really modeled by the same linear Gauss-Markov target motion

model. Yet, a given correlator-tracker may still retain the ability

to follow that target, and thus essentially put all observations

of it into the same track set. (This will usually be carried out

by highly nonlinear adaptive Kalman filters - which do not reflect

the target motion model assumed here.) Clearly, a linear Gauss-

Markov fit to this track set - which is one of the computations

required to obtain the score of the correlator-tracker in question

(see eq. (4.20)), - in general for this situation is not

appropriate.

Consequently, a special procedure is used in computing

the score for a correlator-tracker which has at least some track

sets generated apparently by a maneuvering target as described

above. In essence, the procedure retains the mathematical rigor

of the model, by simply replacing the single track set in question

by a disjoint union of different (but almost contiguous) track

subsets, each distinct track subset based on measurements eminating

from a different linear Gauss-Markov motion model (as is permitted

17
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in the overall model). The termination time of each such subset

(and consequently, the next sampling time being the initial tiige

of the following subdet) is determined by either a simple chi-

squared test involving goodness of fits or, more generally by using

the non-geolocation attribute of common - but unknown - identity

in monitoring the entire goodness of fit data probability function.

See Appendix C, for implementation of this procedure and for

overall flow charts for computing the score JV of a given

correlator-tracker as a function of incoming data.

It should also be noted that often correlator-trackers operate

with nonlinear adaptive-extended Kalman filters of the track sets.

In these cases the original filters must be replaced by the linear

ones for the model developed here (see eqs. (2.1), (2.2)) in order

to reflect the total goodness of fit of the track sets.
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4!

2. ASSUMPTIONS AND BASIC DEFINITIONS FOR THE CORRELATION-TRACKING MODEL

((1)) Sensor Systems

q known fixed sensor systems sample data in the form of vec-

tor reports at known and possibly random outcome times

t0 < t1 < ... tj0, where j0 is chosen relatively small .based on

experience or other factors. (See the discussion on choice of J0

in the.previous ;subsection.)

((2)) Target Initializations and Terminations in AOI

An unknown number M M (to the observer) of targets begin

existance in the sensor areas of interest (AOI) up to time t..

This is due to targets either entering the AOI for the first time

and/or becoming sufficiently active that they may be detected by

at least one of the sensor systems present. Some of the targets

in the AOI, later may terminate existence (relative to the AOI),

i.e. exit the AOI or quiet down so that they can no longer be de-

tected by any of the q sensor systems present. The number of tar-

gets actually existing at t. is denoted by M., also unknown.

Thus, Mj MWj) M W is non-decreasing in j, and M and M(j)
) j

are random integer outcomes.

Related to the above definitions, associated with any target

i ( M( U M are two unknown random integers ui, vi,
j=l

0 luiivi, where tu. is the time of target i's initial existence
1

in the AOI and t is the time of its termination. It is assumed

that any target exists over successive sampling times and if it ceases

existence (for two or more sampling times) and begins again at a

later time, it is considered a distinct target here.
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((3)) Existence of Target State Parameter Vectors and of

Observed Data Vectors (Detection)

For any target i, time t. and sensor k, X.. represents3 1)

its state parameter vector (not dependent on k), Zijk its

observed geolocation measurement vector, and Yijk its observed

non-geolocation attribute measurement vector. Z jk is the set of

false alarm vectors occurring at time t. due to sensor k.J

X.ij 3* iff target i exists at time tj, in which case

dim(Xi )= m is known. Thus Xi. i iff u< j<v.
1)1 = 1

The following is closely connected with sensor detection:

Z ijk iff sensor k makes at time t. one geolocation

measurement of target i, in which case dim(Zijk) rjk is known.

Z~jk iff sensor k receives at time tj, fk (f 2 1i)

geolocation measurements of false alarms in which case, the false

alarm set is ZOjk f-- ZOjkwI1 6) = ... , fjk}, where Z jkw s

th
the w false alarm vector seen by sensor k at time t. and

3

dim(ZOjkw) = rjk is known. fjk is an unknown random outcome,

distributed exponentially as Expo (Xjk), Xjk known. fjk's are

statistically independent with respect to different (j,k)'s.

Yijk 9 * iff sensor k makes at time tj one non-geolocation

target attribute measurement of target i, in which case

1 • dim(Yijk): b, dim(Yijk) and b are known.
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X. ij is always unobserved.

Zijk and Yijk are always observed.

Index i >O (including i= 0 for the Z ojk's) is unknown

to the observer, while j and k are always known. Index w is

always unknown. However, when the observer forms a partitioning

Q() of the data (see the next subsection), relative to Q(J)

assumed to be formally true, index i (including i= O) becomes

(formally) known.

If X = , then clearly Zijk =-Yijk=O. for i< k<q.

On the other hand, X.ij t. does not guarantee Z ijk and/or

Yijk being nonvacuous. For example, sensor k may miss a dis-

tinct detection due to resolution problems, noisy background, or

reliability problems caused by equipment or human operator failure.

Define, for any i; l< i<MM; j, k,

~ Zoik df ZOk= (' Z~jk -zOj

Zijk represents all observed data of target i (for iŽ> 1)

at time tj by sensor system k. It is called a report.

((4)) Partitionings of Observed Data

For any i, 1=<i<-M , define

Qij))d {(i, a,k)l for all a, k,
O4uaj & ljk<q such that
z iak j4•

= target track index set i up to t..

2

21



Q(i) _ {(O,u,k,w) I for all (z, k, w,

Oea j & 1•k<q & I 1 f;S & such that

Z Oak (and hence f ak>1) )

= false alarm index, set up to t. (possibly vacuous).)

The partitioning index of data up to t. is given by

(j) df (
Q - {Q i ie 0 })

* where

A(j) d__f { 0=_M~j M Y(O)•#A I.= {i I OK ie'M &

corresponds to the set of all distinct target track sets established

up to t., including the false alarm set as a special track set (0).

Notice that QM) is determined by the (detection) set of

all (ia,k)'s for which Ziak 30, and indirectly by all T ikj'S

MM,) by all ui's, v.'s; and by the set of all (0,a,k,w)'s for1 1

which fak> 1.

Given index Q(J), there are infinitely many corresponding

partitioning outcomes Q (j( ), depending on the values of the

Z iak S, where

0(JM (Z Mj) !if {Q (J) (Z M) ]iý A(j)}

Qij) MUM)) d__f {Zi k I (i,a,k) Qi(j)I

In general, we identify, if ambiguity does not arise,

Q (J)(Z()) with Q

Note that all partitionings QM are unlabeled,that is the

indices i for each track set (or false alarm set, for i = 0)

Qi M) does not identify what target i really is. It is just a

convenient index.
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In some of the following equations equality holds only after

a suitable rearrangement of indices is made.

((5)) Target State Parameter Vectors

The results here do not depend on QM:

Given outcomes (ui, v.) for i= if,.., M and equivalently

those (i,j)'s for which X.. i ;
1)

X(i fx I ui< Sa/-min(vi,j) }iXia 0 1
={xi. I0_ct_•j •x.• •O}

= set of state vectors of target i up to t..
)

X] . - {X.. I "<inMM & Xij Y

set of all state vectors of targets existing at t..

(xX I 0a c 0 j & X 3 $1
= set of all state vectors of targets existing sometime

up to t..
)

Initial state vector X. of target i (at t ) is assumed

to be distributed normally N (E(X. ), Cov(Xi )), where
m i~u1  Vu

Cov(Xi. ) is known and E(Xi ) is unknown, unless otherwise

specified.

(Prior information for X j<ui, may be used to determine

both or either of its moments.)

If u i<vi , for a =ui.i, .. ,vi, assume

X i I &= lba Xia + Gagi 21
,s "i,ct-1 "W • , 2 i

linear Gauss-Markov homogeneous target motion, where
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is m by m known transition matrix.

G& is m by n known coefficient matrix.

Wi is distributed N n(0, P ); P known.

Wi 's are statistically independent for different (ia) 's ;

they are all unobserved random variables.

X i,_1 and Wia are statistically independent,

Xi 's for different i's are statistically independent.

((6)) Observed Geolocation" Data

dj) {Zf
Z . ick O <a <j & l<k <=q & Z. 4o, for any i,

0 1 i <M(j),

= geolocation data for track set i (and hence for

target i, i unknown to the observer) up to time tj,

Z ij --- {Zijk I 1<-- k < q & Zijk 9 3 },

= geolocation data for the ith track set at t.)
(from all sensors),

Z df Zijk 0 5 i _ M M & 1 5k lq & Zijk'}

= geolocation data for all track sets at t.,
z(j) df (.
z - {Z Ziak I 0 L i M & 0<- -_ L j & l<_--k -q & Ziak

{Z 01 0:ýct;j & 9 4

= geolocation data for all track sets up to t.

total observed geolocation data up to time t..

Define similarly, Zi ), z.i, zf, ZM , etc.

For any Zijk , i,..., M(j) the observed geolocation

target data or measurement is assumed to have a linear regression

24



relationship with respect to a corresponding target state vector:

zijk = Bjk'Xij + Vijk

In more compact form,

Zij = B. Xi + V.j (2.2)

B 31

BB. Mo)I
B.. 

j.

for lc 3q for 1<k.4q
,such that /such that
Z ijk Y j Y

Bjk is always a known rjk by m matrix. Vijk is

unobserved and distributed statistically independent of X.. and
13

indeed of X(J); V ijk's are statistically independent for

different (i,j,k)'s.

Vijk is distributed normally as Nrjk (0, Rjk), with

Rjk always known.

Thus, for i= 1, .. , M(j):

V.. is distributed as N (0, R.),
1)ij i

where

(R

.for l< k < q
such thalt
Zijk • ',

dfs f , j r k = dim(Z.ij)(such that 1)

Since rjk is known to the observer, if Q is given, then
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a ij will be known (even though i remains unknown to the observer),

if M(JI is given. Similarly for B. and R..iJ i

Let

+(j) df MZ 1. M M ZiM

{zi1k k qk , 0<*z< j, i<i<M()kii}

= total observed geolocational (true) target data up

to t .

Note that

z0(J) = total observed geolocational false alarm data up to

tj.

For i= 0 such that Z0 jk$, and for all w, l<_i < fjk '

it is assumed that Z0 jk is statistically independent with respect

to different (j,k,w,)'s , all other Z.i S 1< i.5 M and to

XWj). In addition, it is assumed that i- fj -4- 1, for fixed j,k,

the Z 's for 1 __ w< f are ident.ally distributed asOjkw =jk

ZOjkl N(Ojk, Mjk), where 0 jk O E(Zojkl) -r-d M 0•kl
*jk Ojk

0jk and Mjk are assumed known. Although in general fjk is

unknown to the observer, given (true) Q(), fjk becomes known.

Similar properties are assumed for the Z ojk,'s given QM.

((7)) Non-geolocation Target Attribute Data

Let a and b be fixed known positive integers and

dfC G I- {C 1 , .. , Ca, a fixed known set of distinct objects where each

C (C) ; i• 5_ a.

The C. 's represent possible non-geolocation attributes of

any target.
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For example for b = 3,

C 1 = visual identification

S{fn 1 , .. , nl00},

where each ni is a distinct ship name,

C = observed flag color

£ {Red, Green, Brown, Whitel

Ca = no. of radar sensors determined to be on-board the shipc03

c{0, 1, 2, .. , 101

Thus, if all possible combinations of attributes can occur,

then a = 100-4-11 = 4400; but if certain combinations of values of

Ca 1 , Ca 2 , Ca3 are excluded,then a may be a good deal less than

4400. (This will often be the case.)

Define, random variable Hi (not dependent statistically on

Q(j)) over the set C to represent the distribution of possible
M(j) Thprb

attributes occurring for target i, i = 1, .. , . The prob-

ability function of Hi is known. (Hi's outcome is unknown to

the observer.) Also assume that the distribution function for H.1

is not dependent on t., for the duration of target i's existence

in the A.O.I.

Now for any i,j,k such that X.j j A and l< k •q, let

ijkjT ijk be always an observed random subset of {I,. .. ,b) which is

statistically independent for different (i,j,k)'s and statistically
indpedet f (j) (J) (J) a

independent of X Z and Q . Let al and ac" be

arbitrary, 1 : st, cc !a and let Y' df (Ca ) andS= -- t,8 8 cETijk

Y^- (C .)a I • _< 0 b

Define conditional random variable Yijk by
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- =- (J

prijk ( Y,•H y., Q(M)) d p(Y Y, 0Q)( ) (2.3a)

a known function of its arguments (not dependent functionally on

i nor k and only dependent on QM through the outcome of

T ijk).

Analogous to the definitions in subsections ((5)) and ((6))
define Y_ M Mj , H I, etc.

Y ik can be considered the observation of Hi, the actual

non-geolocation attribute present (given selection outcome Tijk)

of target i.

Assume that given the T ijk'S, all of the (Yijk lHi" Q(J))Vs

are statistically independent with respect to different (j ,k) ';

suppose all (Y i I Hi, Q(J))'s are statistically independent for

different i's,

Equivalently, for outcome Tijk 4

Yijk 8 ijk Hi + Vijk

In more compact form,

Y'3= 5-Hi + Vij (2.3b)

)8 i .. iji i•ji8df ( V~
j q) for )<k <q _ < q

such that such £hat

(jijki
df B ,

df ijjk ijik28 (Of .. , Of i, 0, .. , 0),
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is always known, where the 1 in the above 1 by b row vector

occurs at only the bijkBth position; for outcome

Tijk = {bijk;l' bijk;2' b ijk;aijk

df
a card (T.k,ijk ijk

1l~bijk;l '4 b ijk;2 <"<" b ijka ijk' b

The V 's are unobserved discrete random variables withijk

known distributions, and are statistically independent of Hi-

For different (ijk)'s, the V ijk's are statistically independent

Given a QM)I Bi is known.

Unless prior information is available, the probability dis-

tribution function for any H. is not really known to the observer.1

Consequently for purposes of implementing the proposed score in a

real-world setting (where the target identifications are not known),

it is assumed initially that all of the H.'s are statistically1

independent with respect to different i's and possess identical

uniform prior distributions over C. On the other hand, for a

simulator-dependent measure, the Hi's may be assigned different

known prior distributions (including possible dirac ones), if both

the attribute properties of each target are known and the index i

is identified with the proper target by the simulator.

Thus, we define here

pr(H. = Y- I Q(J)M

- pr(Hi = Y (2.4)

II/a, if Y-1 C

0 , if Y'!C
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(S) 1"tl-Obsarved Data and Addttional Notation

By assumptions and from subsection ((6)) it follows that

prej) IO )(, QJ)) - (2.5)

= pr(Z W I Q 0)

= pr(Z+(0) IQ (J)).pr(Z0(J) i QJ),

noting again that since Q0) is given, so are the outcomes of the

Tiak s"

By suitable rearrangements, the total observed data vector

may be broken up into geolocation and non-geolocation atrribute com-

ponents, and further into geolocation observed target data, geo-

location observed false alarm data and non-geolocation attribute data:

Using the Z notation, the following interpretations hold:

= track set i (i.e., all data corresponding to
i Qi (j)up to tj

Z.jk = report (ijk)

= all data for track set i at tj, from sensor system k,

Zij = (Zijk) 11 k 1: q,

Z = all data at tj,

Z(j) = all data up to tj, etc.
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Finally, notation will be introduced which emphasizes At each

new sampling time just prior to forming a new updated partitioning

(which will incorporate and be based upon the new data), the

observer's lack of knowledge:

ZY J Y =k C2, ,71

k =l,,q

up to suitable rearrangments of Zjf where mjk 0 is the total

number of data reports observed by sensor k at t. - always known -

where, recalling from subsection ((3)), a single report consists of

either (geolocationy data Sk and/or non-geolocation attribute

Yjk

data 0'jk' for sensor k at t..Y3 3
ayjk is of the form

5yjk Z ijk (rjk by 1) (2.8a)

for some corresponding unknown (to the observer) i = i(y,j,k),

1 (, (MM also unknown), or it is of the form

ayjk = ZOjkw = ZOjkw (rjk by 1) (2.8b)

where w = w(y,jk), l Iw•fjk' the total number of false alarms

observed by sensor system k at t.. (Recall that)

Z0 = {Z0 I 1 w••fk}. At most one report - jk correspondsOjk Ojku) 1 1 = w jkl

to each target for sensor *k at tj ; the remaining reports are

false alarms.)
Note than for any Q (J)( does not depend on QM)

but does satisfy the relation
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_. r Twlw
jk "q(•jk) + k (2.9)

/i=1,2,..*M
such that
•Yijk O •' but Z ijk=

where q(jk) is the number of target reports seen at tj by sensor

k (see eq. (4.37), fjk is the number of false alarm reports seen

at tj by sensor k (see subsection ((3))), arid the last term

represents the number of reports seen at t. by sensor k, which

contain only non-geolocation information (and no geolocation infor-

mation). Unless Q(J) is given, each of the terms on the right

hand side of the above equation are unknown to the observer.
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3. BASIC DECISION AND INFORMATION THEORETIC PROPERTIES OF THE

PROPOSED SCORE

One basic score J for a given correlator-tracker is defined

here to be

(4 (j) •(j)) ! U 2 log pr(Q C) = 6(j)Iz(i) =j) j)) (3.1)

where is that outcome of partitioning of data corresponding

to the correlator-tracker in question and Z is the observed

data outcome.

The corresponding simulator-observer dependent measure is de-

fined to be

(J) (J -; (J(Q Z , = Q , (3.2)

where Q M (ZJ) is an outcome of the true (but unknown to the

observer) partitioning of the data.

Thus 1( ) is a cross entropy measure. (See, e.g., Ref.

[.22].)

Consider the statistical decision theory game with parameter

and decision space being the set of all possible outcomes Q()

of Q0). Observed data 1(J) has distributions of all relevant

random quantities determined from the previous assumptions. For

this game, the loss function L is of the zero-one type: for

decision outcome Q and true parameter value *Q(j) of Q(J),

"L ) iff (j)) 0(j)0

"0 if f ; j) =*(cj)

Then the Bayes decision function for this game is identifiable
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*- vwith the posterior maximum likelihood estimator Q[J) = [(ZM1,

i.e.,

maM prQj (j) z Z(j, •(J)
max pr( z

(over all) (3.4)

occurs for = , uniquely.

(See Ref. [23], Chapter 11 and Ref. [24] for background and

elaboration of results.)

Thus it immediately follows that

min J~(QI Z(D)

er all)

occurs for ;(j) = QlM, uniquely. (3.5)

If the above statistical decision game is modified to choosing

between two hypotheses (the results are readily extended to more

than two)

H (1): Q(J) = 6 (j) vs. H (2): Q(J) = Q (j)

with loss function and prior distribution specified by (assuming

Q " "• df (21

LQ(0(!-!))" L (3.6)
000") 00(j) Lf L122).

L(12) L(21) > L(11) L(22)
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pr(O-0) = 6(j)) !Lf P1
(3.7)

pr (Q (j) = ý(j)) !Lf P2 Pl

then the Bayes decision function for this game is

Decide H iff pr (7 (j) = z'p (j) IQ M = 6 (j)

(1) M =--Zqj) M 69,j)
pr(Z IQ =Q%

> T'
0

pr (Z M zo (j) I Q (j) M)
Decide H iff

(2) pr (j) (j) [Q M 61TITY

< T' (3.8)0

where threshold

(2.1) _ (2 2)
T I !U L2 L - (3.9)

0 Pl L (12) - L (11)

Equivalently, taking logs (see the definition of in eq.

(3-14)).

Decide H iff

JI( ; (j) 0 00)
'z J, Z -j))<:..k- 2 log T-

0

Decide H iff
(2)

J, O(j)) J, (0,0(j) 2 log T-
-j I 'z 

Q IZ

(For P, =-P2 and L 12 L 21 and L I i L 22i To

.2 lo T 0.)
0

Note the equivalent decisions
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Decide H( 1 ) iff

c;) 00)CQ j j 2 lgTo

Decide H( 2 ) iff

J(Q ),Z(J)) , - 2 log T0  (3.11)

where
df - L( 2 1 ) -L( 2 2 )

T 0= L(12) LT(FT) (3.12)

For a discussion of the distribution of the J's and J's,

and hence the type I and type II decision errors, as well as the

probabilities of correct decisions, see subsection 5.

Suppose now the prior distribution of Q0) is uniform over

the set of, say, 7j possible outcomes.

Then

j (;Q() P Bi () =" J( Q(i),*Z)) + D.i(;(j)) (3.13)

where

J (;J) 7(J)) ! -2 log pr(Z) = -0j =()) (3.14)

and

Dj J 2 log (Yj'pr(Z7(j - Z(J)) (3.15)

)M
Thus J and J' differ by a function of Z and not

-0)J(J)o

Hence, in this case, defining Z- Q i •(Z ) as the condi-

tional maximum likelihood estimator of QJ), i.e.,S(j) = 0 j , (j) 0(j))

max pr(Z~j) = = ) (3.16)
ver all)

0 (J) 1 (J) un q e y
occurs for Q uniquely,
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then equations (3.5) and (3,13) imply

min J( ,) and min J( (,) (j)

ver all over al (3.17)

occur for 60) = 6i) 0 =u uely.

In addition, eq. (3.13) implies that

*(~i ,'())= ((3,Q))+D~(Q~) (3.18)
3

where

"(Q )0- ) .jC(Q(3cC)~C) J 1) (3.19)

z

and

D- (Q`M) df ( (Z M(j)=, 000) (3.2G)
3 Z(

the latter being a function of Q only.

Then

min f(Q;(j) and min 1-(Q(M,00)) (3.21)
lover alli over all)

"(J) (J ) yusn

occur uniquely for the same function ;Qj) - 6b) Q (j) by using

equations (3.17) and (3.18). Also, the Fundamental Inequality of

Information Theory (see, e.g., Ref. [22], Chapters 2 and 3) implies

that if the Q3) 's are restricted to constants (not non-trivial

functions of 10) ), in the two equivalent minimizations in equation

(3.21), the corresponding mimina occur for the common value

(j) = 00(j).. These minima are easily seen (via eq. (3.4), e.g.)

to have larger values in general than those for the unrestricted

case in (3.21).
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In summary, the above equations imply that if correlator-

tracker has partitioning output 6(J) operating on data 1(J)

and the true but unknown partitioning of the data is actually out-

come ( then the lower the score J(Q(J), 1(j)) - noting, if

the uniform prior distribution assumption for Q(J) is made, J

& (j) e*\j)
can be replaced by J - the better Q approximates Q

in both decision and information theory contexts.
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4. COMPUTABLE STRUCTURE OF THE SCORE

Throughout this subsection it will be assumed that the prior

distribution of Q(J) is uniform so that, without loss of generality,

we consider only the score J and its expectation (with respect

to data Z(j)) V. For ease of notation here, outcomes of random

quantities - such as with respect to Q(J) (partitioning)

Z(j) with respect to Z(j) (observed data), etc. - unless ambiguities

.arise, will be identified with the corresponding random quantities.

The structure of J is seen to be, using eq. (2.5) and

the calculus of conditional and joint probabilities:

J Q(J).,I z )) = 2 log prLZ+ + . (j))

-- 2 log pr(.Z0 (j)-IQ J)

-2 log pr(Y(j) IQ(J)), (4.1)

a decomposition into a sum of three terms: the first involving geo-

location target track data, the second pertaining to false alarms,

and the last relating to the non-geolocation target attribute data.

In turn, each of the terms in eq. (4.1) may be decomposed by

straightforward use of the special notation developed in subsection

2, and eqs. (2.1) - (2.4), with the corresponding assumptions:

-2 log pr (Z +(j Ie(j))

=- 2 log 1 I[ pr(Z ia Zi-IQ

(1<i <M /0 < a_<
such that such that

M L4 (4.2)

(such that
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is the measure of overall goodness of fit of the geolocation data

for partitioning Q(M) to all the track sets (determined by Q()

(zicz Izi (i- l,Q (j M) represents the random variable of goodness

of fit of the geolocation data for partitioning QJ) to track set

i at t. (based on previous data), and

Li L. (Z+(a),Q(J)
ja +

!L -. 2log pr(Zialz i 0-10j) (4.3)

is a measure of goodness of fit of geolocation data at t. to the

thMi track set, with respect to Q(.

L i(M is the ith track set goodness of fit of the geo-

location data for Q(J) (corresponding to target i, the index i

being unknown to the observer), and is given by

i (J) = LiJ) (Z +M),Q(j))

df -2 log pr(Zi(

.j L. (4.4)

such that

For a =0, (Zia zi (al) Q0 M) may be interpreted as either

(Z 0IQ ()) or using information Z as (ZiZ Iz '),Q ,Q .

if Z. 3 and (c-l) # $, then since X (0) .V. (00 andI Zia • n i .i '1

hence Zi are all normally distributed (see subsections 2((,5)),
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ROD., (Zi IZi(0-l),Q(J)1 is distributed normally

Nsi(i (j)' a (j)) (4.5)

where

(j) =(J)(zi (CO MJ
Pim = ia 'Q

df 0(a-) (j)

i X a-l, (4.6)
1

I;x M al j

= Cov(Zia 1i ,Q M

-Bg • A M + R) (4.7)
1 1,~~ 1

ci)
P(J) can be considered to be the optimal estimator (since, e.g.,

it is both the minimal expected normed square and posterior maximum

likelihood estimator) of X based on data Z(C-l)I for given

M (j)partitioning Q .} In addition, it also can be shown that X£C

is the covariance matrix of error: E(J)= Cov(. - Zi). (Seeia

Ref. .125] for these and other related results. For convenience, the

dependence on j, for a < j is not indicated for the X, A and related

terms below.)

Xi;a-la = XQl(zi

SE(Xi,aZia (4.8)

= optimal estimator of

Xia given Z (al) and
41 1

41



d•Coy (xia 1i ,

- COV(Xi;ajl,'- X.i ) (4.9)

= covariance matrix of error between

X i;a-1 and X i.

X. and A.;6-l,0 may be obtained recursively as outputs,a-ll c

of the standard Kalman filter (for linear Gauss-Markov data measure-

ment and target motion models - which is the case here; see, e.g.

Ref. 126]). For completeness, these equations are presented below:

Define for all j 2__a2: 0 , for given QJ)

A df E(i z(a) Mj
Xd E(X- ' Q )) (4.10)

and
df Cv•~a

Ai;C1,a -- Cov( , - X. i)

- Cov(X ia I Zi Q()) (4.11)

Then in the notation developed here, for given Q0); 0 !CL j

AA

X i~,+l -- •a+1 "Xia ,,"a•+%1•÷"• (4.12)

ia. = i;Q-l a i;a' Ai;TP (4.14)

i;a-lai i f

K. = K. (Q(j)) df (4.15a)iq I'a '0 , if z.
12,
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A0C IO T. if Zi,a "E 0

1Aiego.a ia ia(4.15b)

0 if Zi =

- V., (zi ) (j
i; 2., a () (innovations)

"-- z -I C1, (4.16)

T -R1 B+ A 1 - if Z
(B a a B i; -1

Sif 
(4.17a)

I - . B).h. , if Zi ct

(4.17b)
A if Zis=

Then combining the results of (4.3), (4.5) and (4.16)

". =L + L7 (4.18)

where

L's= L' (Q(J))

s. ia'log 2 +log det Zia (4.19)

= non-random goodness of fit geolocation

data term for track set i at t, with

respect to Q

and (noting s = U)
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idf T 1- (4.20)

= random (quadratic in innovations)

goodness of fit geolocation data term

for track set i at tQ with respect

to Q(J)M; 0a <j

It should be noted that a nontrivial trade-off exists between

the magnitudes of L: and L'. . Thus, for the same data set

Z+ M), if (j) is a partition withmany relatively small (or one

point)track sets and QIj) consists of fewer but bigger track

sets, it is not clear which is larger in general: -21og pr (Z+

or -2 log prCZ+(j) Z.(j)). In particular, disregarding the inno-

vations vi. 's and the sizes of the track sets (proportional to

the s. 's) - which also really play a role in these trade-offs

for 6(j), the Zia's will tend to be larger (in an eigenvalue

or matrix ordering sense) than those in Q), due to the

Cov(Xia 1Zi Q, ) s being larger (less data reduction for

the same target); thus the Lý 's in general may be larger for

6(j) than for 00)' Yet this implies also that the E-l's
for ;(j) will be smaller and hence the L. I's for will

be smaller than for *0*j)

In order to evaluate L'. and L-. , the determinant and

multiplicative matrix inverse of £it must be obtained. The evalua-

tions of these quantitites, as well as-the implementation of the

Kalman filter equations - (4.14) - (4.17), in particular - are made

more efficient by considering the relative sizes of s. and

m, for each a; as a consequence, matrix inversion and determinant

operations can be applied to matrices no larger than min(si , m)
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in dimension.

Specifically, if s. > m, then for (4.17), (4.17a) may

be used; for (4.15), (4.15b) may be used resulting in a simpli-

fication for (4.14). In addition identities for and

log det E.i can be used. (See, e.g., Ref. [25], Chapter 1.)

Thus, multiplying out the block forms for the matrices involved

(assuming Z.ia j*)

Aie~ e ~ -l -l
A = (D. + A.

k;a-l + D(ia @Ai;e-l,c

=D7I "{I (I +D. Ai -I (4.21)
1,ea la 3-;a-l,a

where

df T -.

1 . 1.

T -
< BaS'RcI B , (4.22)

(such that~

Xi;a,a = Xi;al,a +

A *T -
i;aa L (B *R ;

uch Tha (4.23)

where

S df - pZ (4.24)

(innovations for target i by sensor system S at t )
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,if 00 ,~ta 0 z

- -,-z,

-B X x (4.25)

Ito i iIaeo

":1 ;o(4.26)

such that
~. \ "ia,•,

where
df -1 T

Ai - ,8 a RaB CIO i; aLR (4.27)

aB is the Kronecker delta function (i.e., 6 8 V =v 0,

if 6 0. B; 6 a" = 1, if 8 = BI

Hence, (4.20) becomes

L". = Ai

such that

• = •VT .R-I.v
Ti;a,8 o, i;0,0

such that

-2 V. 0,R *B .A. B R ivt,

/l7 0'<8 q,
such that

Zi z. 7' (4.28)
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Also,

log det = log det R

+ log det (Im+DiL*A (4.29)

noting that

log det R=. log det R (4.30)

rsuch thati

This yields a direct evaluation for L'. in (4.19).

On the other hand, if s <M, then for (4.17), (4.17b) is

appropriate, forv.(.4,15), (4.15a) is preferable,, resulting in (4.14)

simplifying somewhat:A. = (Im -A. 31)
A m- i;a-l,a ia )Ai;a-l,a (4.31)

where

F. df B T A.• B .. (4.32)

1 - ,8 <.q,
such that\

z

and

A A TX. -- +.A . • B .Aj. .•.~
i;Q'Q i;a-l, i ;C-l,ct i;a;BV, 0 ;a,o"

. such that

1 (4.33)

\Zi/

where the Ai;•";., i2s (r by r as are determined from the
-1

block decomposition of Eic
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C such that

(ia8s ":/

where in block form

Zif= (Gi; A•'B )' B~) (4.35)

isuch that

with

Gd 6 L R +B A. EB (4.36)

The main difficulties in the evaluations of L: and L.•ia ICL

for either relation between s. and m are as follows:

For s.i > m, eq. (4.21), e.g., requires matrix inversion (of

size m) and eq. (4.29) requires a computation of the log determinant

for an m by m matrix (the second term).
-l

For si < m, Z-. must be obtained, preferably in the speci-

fied block form of the s (see eqs. (4.34) and (4.35))

and log det Z iE must also be evaluated (E.i is of dimension s. )"

In Appendix A, two iterative techniques are presented which

can help in resolving these computational difficulties. The first

is a procedure for obtaining the inverse in prescribed block form

of a positive definite matrix also given in the same form (for a

general number of blocks). The second, similarly, obtains the log

determinant of a positive definite matrix in block form.

48



Some simplifications for the computations occur when

Ba, O= B 00 and RB = R a0D i.e. are constants for all a such

that Z iaa *. (This is not too unreasonable an assumption, since

this still allows the sensor systems independent operations, but

with the same general measurement characteristics.):

Let

*q.ij df I ,4.37)-

such that,"

i,jk '

Then

D B 941•381
i'M ic&*aO aO ctOI

and eq. (4.21) simplifies accordingly;

X. Xi;a-l,a +q.i'A.a*BTaO- 0Re, Vi;as,

1 < 8 q
suich that

i / (4.39)

and eqs. (4.24) - (4.28) simplify slightly. Also, (4.38) and

log det R = - log det R (4.40)

somewhat simplify (4.29). Eqs. (4.31) - (4.33) and (4.36) also

simplify slightly.

The special case of one sensor system present (i.e., q =1)

shoyld also be noted. In this case, using similar notation as be-

fore, either qia = 1 or 0, depending on whether ZiaI or

Z =, respectively. Since Z = means no geolocation measure-

ment is made of target i at t by the only sensor system present,
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L is not calculated here and in effect Li = L-= L

Consider then Zia II ll Thus s= ria.

For rim > m :

Di T = B R-l B (4,411

with (4.21) remaining formally the samet

-. T
Ai=. B R (14?42)

Xi;ca xi;c-l,ci Ai;cia B al Ral Vi;(,l

V -B x(4.43)vi;a,l zial B al, Xi;a-l,

E71 = A.
/i• x~;a;i,l

= R - R - B 1A B T Rl (4.44)

T

I;,. =v. A 'A F(4.45)•IQ = i;a,l'Ai;a;l,l Ai;a,l (.5

1/i = r. log 2v + log detE, (4.46)

log det.ia = log det Ral+ log det (I M+D. A-A i;al,) (4.47)

For r. c< m:ciG=

TFi B =aB TIAi;a;l,I.Bcal (4.48)

with (4.31) remaining formally the same;

X. X. + Ai B (A 4.49)
;aci i;ca-l, c L ;c-Ll, i ;a;l,l i;l,l

equation (4.43) remains the same;
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-1Sis = i;f l,i

T-1

l (RIl + B A B T) (4.50)

1 a ai;a-l,ci al
log det'i. = log det (RaI +BI Ai B~ ,(.1

with the equations for L"'. and L. being formally the same

as (4.45) and (4.46), respectively.

The next term considered in eq. (4.1), -2 log pr(Z0(J)I Q(J)),

is the goodness of fit of the false alarm data to Q(J) (or vice-versa),

0:1 a1ij

Note first the relations (a consequence of the assumptions in

subsections 2 ((3)) and 2 ((6)):

Ptr(Z (J) iQ()- Ia__ 11 "pr(Z I~)
0 0 [1. /lpk.q Oak Q ( (4.52)

(such that|Z Oak •q

where if ZOak f' fak> 0, then

pr(ZO k MQj)) = fIk pr(Zak Q(j)
W=i

f 2 e ROak (4,53)

(2w) fakrak/2" (det Mak) ak/2

f ak

dflk TZ.ik ekM_ 1 (-Zoiwck

W=l

+ L k , (4.54)
Oak Oak
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LeOak L"o Ok (Zoak, Oa)

.. , (ZOak -2 o) .'-
a (Zak 'Oak ak Oak

=tr(Soak M) 1 (4.55)

df ak T (.6SOak E (Zkak -0ak) ) , (4.56)

W=i

-df (1/f Zoak (4Z57)

ZOak ak) E (457)

W=1

L = LZk Q )ZOak Oak Oakf (4.58)

df

-f '(Z - T M-1-
"-ak" (Ok- k ak Oak ak)

(Equation (4.54) follows from the standard procedure of adding

and subtracting ZOak within the sum.)

ROak represents the random (geolocation) fit of the false

alarm set for sensor system k at t with respect to Q ,

0 <a < j

L` O measures the scatter of the false alarm data for sensoroak

system k at t° with respect to Q SOak is an unnormalized

sample covariance of the false alarm data and Z2ak is the sample

mean, for sensor k at t-

L"k measures the bias between the observed and predictedOak
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false alarm data means, for sensor k at ta (with respect to

Qa)

Then, if we define, finally,

L" = L- ( Q ())(.9
Oak Oak (4.59)

---f fak * (rak log 2w+ log det M k)

a measure of the non-random goodness of fit of the false alarm set

for sensor system k at ta with respect to 00), then (4.52) -

(4.55), (4.58) and (4.59) yield

-2 log pr(Z0(J) IQ (J)

0 :S j <Z L Oak (4.60)

- a | (such-that

where

LOak = LOak(Z OkIQ(j))

- 2 log pr(ZOklQj)))

=R~a + L-6e
Oak Oak

SL' Oak +LOak + L Oak' (4.61)

LOak measures the total goodness of fit of the false alarm set

for sensor k at t with respect to Q(J), 0 <a <j

Computational problems for the false alarm scores appear

minimal; the real difficulty lies in the modeling - specifically

in the choice of 0 k's and Mak'S.
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The third term considered in eq. (4.1) -2log pr(Y()IG 0))P

is the likelihood (or goodness-of-fit) of the non-geolocation target

attribute data with respect to QMJ.

It follows from the assumptions made in subsection 2((7)) that

pr (yi(J) 1 Hi, Q (J)

-i n pr(Yiki Hi, 0 ). (4.62)

( such that
yick :i

Then

-2 log pr(Y(j) IQ(j)

= -2log a pr(Y(JlHJ), Q(J))'pr(Hj)
fover all\

outconmes
( of H(J)/_

- i M LL J) (4.63)

such that)
Y(i (j)

where
L.i(j) = Li(J) (Yi.(j). IQ J))

- 2 log pr(Y. IQ
1

2 -2log( a pr(Yi(J) HiQ(j))-pr(H i)/over all f
outcomes of (4.64)

H.ie :1 )1C

In addition, note that

VAMj() 0pr( jQ)) 1 ) j prZ i IQ (4.65)

such t-hat
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(J) 0 Q(J) (J)
pr(Zi a fl pr (Zia i , ) , (4.66)

1 <
uch that

The goodness of fit of overall data density at time t

with respect to QM is analogous in form to that of the geo-

location only data given in (4.2) et passim, and can be decomposed

into a product of two factors, one representing geolocations and

the other non-geolocation attributes:

pr ( Zia iz i (a1 , 0())

- pr(ZiIZ i0-1), Q( )).pr(YialYi 0(-l), QJ)) (4.67)

(provided Zia 3 f and Y ia 4' for some O< a <_j).

Also

Li)= - 2 lg H pr(Yia ly. (cE-l) Q(j))0l~ < a -<\
l such that

-2 log pr(Y I(Yci-l) Q(J))

such that

o L•L (4.68)
/!S< a <
such 

that|

where

Lia = Lia (Yi(a), o(J))

df -2 log pr(Y IY ('a-l) () (4.69)

noting for 0 <a <j
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prCYIYtc-l, Q(i)) -I Ypr(Yiai,yH(Yia-l' (J)l)pr(Hi)
/over all\
toutcomes
\of Hie C (4.70)

If a and b are relatively small integers, by using the

(known) distribution functions of the Vijk's or, equivalently,

the p(YY-,•Q() Is, and eq. (2.4) (see subsection 2((7)), then

equation (4.63) can be evaluated. However, for relatively large a

and b this may require - because of the discrete nature of the

distributions involved - a large number of operations. Consequently

the following approximation is proposed for the modeling of the

random variables Yijk and Hi. for either relatively large a

and b, and/or when the non-geolocation attribute set C is per-

haps better modeled as a contiguous subset of b-dimensional Euclidean

space:

In equation (2.3b), assume each Vijk (for Yijk Y 1) is

normally distributed as N aijk(0, Rijk), where Rijk is the

submatrix of R, corresponding to outcome Tijk with respect to

{l,2,.., b), R being a fixed (positive definite) matrix of dimen-

sion b, to be determined.

Define, analogous to Ra
i

ia

la q
For only
I<k<q
such that

Yiak
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Replace equation (2.4) by:

Hi is normally distributed as Nb(E(Hi) , Cov(H)) , with

E(H.) and Cov(Hi) to be determined in relation to attribute set

C. The following trivial identity is used here:

H H., for all times t . (4,71)

From now on for-siven time t. -and Q(M) the function

dependency of quantities on Q-(J) will be often omitted, unless

ambiguity results or emphasis is desired.

Then to evaluate Li., a Kalman filter can be applied to

(2.3b) and (4.71) yielding, analogous to the computations for

L.a (see eqs. (4.5) - (4.20), for 0 < ai 5j, for given QM

A AH. Ha (4.72)

A. = A.(4.73)
Ai;a, a+l i;a,a

A A
H. H + + a'v, (4.74)1;aI- i;a-la i;a

- T ý-

A B. .R i f y.
Ai;a-la* .a i~a ' a

K.i df- (4.75a)

0 , if Y ia (

"A." .1 + -f iC .aia la a
= (4,75Sb)

, if Y. =

iT 1 i1 ; -alai

A.i;,a = (4.76a)
A i;a-l,a , if Yi =
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(I -
II.... ... .. . .

b i~a a Ai-la if Yia
. Y(4.76b)

^i;ca-i,a , if Y = 4

f - a, i - (4.77)

4 df (4.78)

z, - * -A

Then

Li L q + L 0 (4.79)

where
df (4.80)

L`ia 7 1ia • log 2v + log det Eia

-df 'a-k (4.81)zi /11< k I q ak
such that)

(Yi k '*

df - T •- (4.82)

Analagous to the cases s. > m vs. s. <im, to evaluate the

iac

above equations, we must consider separately the cases Aia > b

and A <b :

For sia > b, use eqs. (4.76a) and (4.75b), obtaining

^iA. a (V.a + iA. la-

=VAi;a-l,a.(Ib + *i'Ai;a-lca)' (4.83)

etc.,
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P. TO TR-
ai

=a Ice iS (4.84)

x sch that

A cia,a OR.*v (4.85)
(1~~:5.q laBlaB

Isuch-thhat~

~1 R 1  -*K. )

ialaal6a ,,

- (A.; OL B4 V- a

such that

Ri R iao imsB i;aa jar'RiaoB (4,86)

iaB~ (4.87)

such that

~iaB a0/

etc.
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I I J I ~~~~~~~~~~~~~~~............•J.... .•• J•,••-J ,.•.•• :.•. ..... �.•... I-J - 1,•••-•...•

log detia - logdet Rja

+ log det (Ib+viaAi,a ..la (4.88)

log det .= log det RiaO (4.89)

such that
y. ,

Suppose now R is in diagonal form:

S(4.90)

Then ,

Rijk1] 4 •91)

bijk;aijk

recalling

Tijk = {bijk l,.., b ijk;aiC{l,..,b

Also,

T -l ( dia 9i ~(41492)S. R. B8 CI

where

df 0 if T. T8
diac - / , if y Ti (4,93)
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for 1 y Ib.

Hence,

Pia 
( 4. 94)

( I0 iao~b)

dicy did.,y =(1/r) (4.95)

Y -such that such that Y. o
jiao / and there is an n,

1i< nLb, such that

for 
=lb icon T TiCL L

for 11'r<b.

• • = ( ic(4.96)
iaBia I~,8 giaB;b/

0 ,0if y i T.ia

where gi,,y ov (4.97)
(1/r y )v "i;aO;n , if y = bian Ta

ow 
i; ao;1

yi 8; 1 i;Cs-1,cs;b mo

whereva =) - H. .A (4.98)
ia a. _ i-l,ab\vi;a, o;ai i1 8; oa• x

for

H. f ia1c; H.df(9)s-la l~aa H. ' i"b•

and
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y

YjCIO y (4.100)

igaicaB

Also, letting in scalar form

=( 1,a.iaay f lyo.,Y^' b (4.101)

then

Bjet- 1;e,Q'8ia8' = (A. 4; Cg g* - - (4.102)

y ~ET

Note that a ica

log detR E log r b

Fa log r y(4.103)
yeT.a

For 6. as b,

A. =;0 "t (Ib -A.iala F ia).A .a- (4.104)

where

id A, iao

:5. Ap :5 (4.05Csuch tha-t
y. *
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H =H;-lQ + A T -
f such thaty)
SY1 (4.106)

1 ( i;a;a 1 q (4.107)

such that
y icol ý 0
yiao " OW T

f__df AB B(Ri8 + "^ . (4.108)Gi; .a;A0 B', 0"• +" Bims" -

Further simplifications can be carried out, since R is in

diagonal form.

For example, if

A i ; a ( A i ; a 0 , , i1
1<= ,'<a.

1< aia8 .. (4,109)

then

T A a8 i Bi = (hi,ylciB'' 1c,*,8;y.•

1<y ,y, ;'<b (4,110)

where

0, if y- T or
df (4,111)

y b T= i f

y =bi.n... bTin"E"
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similarly

a, T A (4.112)

where

0 , if y /Ti•.

a i1c0 o

a 'B A n ' i " , if
~2 a,a,8;B•"n, rI" 1t ,ct,0,T -

TI-_l

y= b W n:i T ia (4.113)

Alternatively, Li can be computed directly using eq. (4.71)

and the fact that (Yi(j) IQ(j)) is normally distributed with

E(Yi(J) IQ(J)) = B(j).E(Hi) (4.114)

i

and
Cov (Y i~j iQ(j)) B(j).COv(H i)8 .(j)T+R()(415= - +~j (4.1i15)

1i ii i

where

(CJ) df •.1 (j)--"df i,, l"
"=mom 1 " R (4.116)i . i .

Let

(4.117)
C1O
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and assume 4. (j) >b. Then
1

L (j) = L (J)" + L (J)" (4.118)

S -log 21r+ log det Cov(Y (4.119)

* i(j)" df (j) E(Yij) IQ(J)))T Cov(Yj) (10j) i 1(Y (j)-E(Y (J) •

(4.120)

Analogous to eq. (4.29),

log det Cov(Yi(J) IQ(j) log det R (j) + log det (I b + O) -Cov(Hi))' (4.121)
i i

ij di (i Li.() 9j

D i(4.122)

a=0

Cov(,j, •- ((j) Cov(H) ()T + R (j)

R(j)'! R(J) 13-I (j).- (Coy (H ) +D(J )l •) R(J)7
-i --

1 i i

(4.123)

where

i df 0 (4.124)

6j 5
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.3,._

(}To J-1 T -1 "-I

• TY M -E (Y M loJM) =Fa Biak'Riakl(Y iak-E (Y ikI
i i 1 - l~kjq

such that
Yiak (4,125)

E(Y i Q(-0)) = .B .E(H.i)
1

and (4.126)

E(YikQ()= Bi E(Hi) ; i< k

(Y(J)-E (Yi j) IQ(J))T .R W)-I.( EY-jQM

i

J

= ~~('ickEY 01Q~ )T.. (kE(Y. kIQ~) * (4.127)(such that
Yicik '

Then, Li0 can be evaluated by using (4,122) - (4.127) in

* (4.120).

If, furthermore, R and Cov(Hi) are diagonal, additional

simplifications can be achieved by use of (4.90) - U4.95), replacing

Vi;a, 8  by Yi - E(Yi ineqgs. (4.96)-- (4,100).

An approximation for L (d)." the computations of which do not

depend on E(H) , which is more accurate for larger (in the positive

definite ordering sense) Cov(Hi), is given in Appendix B. Thus,

using the approximation no knowledge by the observer is needed of

E(Hi) and Cov(Hi), except that for all i, Cov(Hi) exceeds a certain

fixed large bound.

When Cov(Hi) is diagonal,
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Cov (H. va ((~vr H.b
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5. SOME DISTRIBUTIONALPROPERTIES OF THE SCORE

As in the last subsection, it is assumed that the prior dis-

tribution of QM) is uniform so that J" and I4 need only be

considered.

Then from eqs. (4.1), (4.2), (4.4), (4.18), (.4.19), (4.20),

(4.60), (4.61), (4.59). (4.54) and (4,62) - (4.64) and the assumptions

made in subsection 2 (J(Q() as a random quantity

functionally dependent on Z j), is distributed as the sum of a

constant, a chi-square random variable and a statistically independent

discrete valued random variable. Specifically,

J" (_QJ, Zf(j) J(Qj)) + Ji (Q(J) , Z(j)) + J,(QJ)M Y(J)} (5.1)

~3

O< (<j l<k<q

usch that i

is the constantterm;

ZL )

+ Rak (5,2).
O a < a j _ j S 1 k <k5 q

(such thatt

\ZOak t /
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(since all (L- 100)P'sare distributed as 2s. statistically

independent for all (i,a) 's and statistically independent of

all (R ok ))'s which are distributed as x ) is dis-

tributed as 2 wherek rk

(j = z M_

df

/1 < __I < M 0J / < a < j h

such that such that

z z

J'Q i (5.51 ýý

+÷ E 2: f ak *r k (5,41
0< < j /l<k<qa:

suh that

results )ollowin eq ( -.4 ..) eseial (413)5.515))tfolw

M<< W 0)

Ssuch that

has a discrete distribution.

Under the normal approximation made for (Y01 ) IQ M (see the

results following eq. (.4.70) , especially (4.113) -(4,115)),it follows

that the discrete valued random variable JZ(Q(0), Y(J)) is replaced

in the sum comprising J'(Q(J) ?() (eq, (5.1)) by

<(j (j) + L 01 (see eq. (4.113)),

such that6
Y i Mj /€
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which causes an adjusted computation for J'. JO(Q(ji,ZOi)IQ(j})

is now distributed as the sum of a constant and a chi-square random

variable. Specifically,

J M(Q() Z(j) J- (Q(jM) (Q (J) (56)

where

J 0 M J (Q 1i) + L 'J (5.7)
y1< i <M(J•

such that

is the constant term;

M• M df) ci) • cj ) M (.8,z' a(Q f I -M):z L+ L.()(58

su-h hat
Y. j) e )

is distributed as X , where

nj = nj(Q() (J (5.9)

df + (J)

|such that m

It should be noted that if OQ • the distribution

of Q = °J)) is in general not obtainable in a

simple closed form - even under the normal approximation made for
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(J) 0(j)) . This is due mainly to the mismatching of covariance

matrices of formally assumed data model by the correlator tracker

through ;(j), with respect to the actual data model through i(J),
(5) (5)

For example, in reality let q= 1 1 j= 5, Z0 (5) Y (5)=

t 0' PC = 0, BC -B a= R = R -R (See eqs. (2,1) and
1 1C

(2.2).) Thus no false alarms nor non-geolocation attribute data

are truly present and all observations and target motion are homo-

geneous and stationary.

Suppose also that only (geolocation) data ZiaQl • 0'

for a= 0, 1, .. , 5 = j is observed (see the concluding part of

subsection 2((8)) for use of notation), where for each a, in general

laI = Zia1 , i = i(a) an unknown positive integer.

Suppose now the observer uses a correlator-tracker determined

"0(5) (5)by partitioning Q consisting of a single component 1

1 = {(l,c,l)I ar=0, 1, .. ,5}, corresponding to

zl(a) = {Zlaj a= 0, 1, .. , 51.
°0(5)

Now if Q(5) = Q really holds, then without loss of

generality, Z1 .. = ZIlI, a = Oi if .. , 5, and the observation and

target models in eqs. (2.1), (2.2) combine to:

z11B 01  V 101

Z = B019 0 X101 + V 11  (5.10)

Z151 B01" 00 V1 5 1

= z(5) df
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yielding (z(5) being normally distributed)

9(Z (5) 1(5)) = b+E(Xlol)

cov(z(5) 1;(5)) = ;.cov(x 101 )six + Rl(S

NOW, J'(Q(5)DZ(5)) L (5)(6(5), Z(5)) has random term (see

eq. (4.20)).

L = L5 (Q (5),Z(5)

d L T.a (6-(") Z(5) (5.11)

v TO

= (Z 5 ) _ E(Z (5) (CoV(Z() (Z5) _Z (5)

(conditioning here is on Q()

Then (5.10) and (5.11) imply that M(;(5)z5))0 is
2

distributed as X25, where now
&5

5
C= 5 si.. (5.12)

(5) (5

On the other hand, suppose Q =Q( really holds, where

now

"0(5) 00 (5) 00 (5)

(= {(1,cl)I =0, 1,2},

Q2 = {(2,a,l) I = 3 , 4, 5 .
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"°(5)
Thus Q1 corresponds to {Zlallq=0,1, 2 1 = fZ llja=0,l, 2 )

a d (5) l = , , 1
and Q2  corresponds to {Z 2 lla= 3,4,5} = {ZI 1Ia=3,4,5}.

This yields from eqs. (2.1), (2.2) the combined observation

model:

Z 1l01 V 1011

Z + V~ 2

231 k 231)23
Z2 4 1  V2 4 1

z 2 5 1  V2 5 1

- (5) (5.13)

where B001

o- -B 0 1 - j

But, since here

=( ;- (Xl03) , and most importantly

,T O
covlZ - ----------- + R (5.14)

O ljý Cov (X2 3 1

does not match in shape (nor size) Cov(Z( 5 ) IQ- 5 ) which is the central

-factor in the .quadratic form in (5.11), it follows that

(L5 (6'5,Z(5) Q'() is not even distributed as a noncentral chi-
square random variable; hence neither can (J¢Q1 5 ) ,Z5(5) 5) have

a simple distribution.

Note that, by similar reasoning, if a correlator-tracker is

used which formally assumes Q to be true, then (L5(Q( Z()IQ
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2 (5) ý•C5|
is distributed as x E5as in (5.12), but, as before, (L5 (QD- ,Z- 5 )) A

has a complicated (non-chi-square, non-noncentral chi-square)

distribution in general,

Consequently, in general, for QJ) L Q(J), since we cannot

obtain a simple computable distribution for J'(ý(J) (J)),

similar remarks hold for the difference J J J(Q(iJ 60 )0)- ,

conditioned on Q(j), Thus, the computation of a threshold T tsee

eqs. (3.8) - (3.10) based only on a given significance level of

discrimination B (obtained by solving B = Pr (Decide H( 2 ) IH( 1 ) true) =

Pr(Jj >TIQ (j)) for T) appears equally infeasible.

In summary, J'(6 ,Z ) can be used two ways in a real-

world situation:

(1) For determining how well a given correlator-tracker,

through its partitioning of data eJ) really fits data z

by evaluating the cumulative distribution function of the random

quantity (J (J)(j) ) M Q(j)) at the outcome point J (Z(),•(J)

This distribution in general should be computable, since the random

quantity here is the statistically independent sum of a computable

constant, a chi-square random variable with a computable number of

degrees of freedom and a discrete random variable which has computable

characteristics (theoretically at least, if parameters a and b

are small) (see eQs. (5.2) - (5.5).) (An approximation based on

simplifying the computational burden for the discrete random variable

term is given in eqs. (5.6) - (5.9).

(2) For comparing two (or more) given correlator-tracker schemes,

operating on the same data. In general, up to an adjustment for
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different decision losses or gains and presence of prior distributional

information on Q (see eqs. (3.6) - (3.10)), that correlator

tracker, determined by partitioning QJ), is chosen among a given

set {;(j), (J), " .m.0(j) say, for which J is

minimal. However, the statistical significance of the differences

between the values of J'(Q(0), Z ) for different correlator-

trackers 00) is apparently difficult to determine.

Note that using the distributional results in eqs. (5.2) -
0((j

(5.5), for example, I(Q(j), Q ) is easily obtained as

11((J), ;)) = j (Qo ) + Cj + E(Q M, YM)). (5.15)

If the normal approximation is made (for Y(J)I0(j)) , then eqs.

(5.6) - (5.9) imply

01, Q ) J(Q( W ) + (5.16)

1A evaluated as in (5.16) can be used also as measure of

average performance of .0 ) (with respect to averaging the data

ZMj)) and can be used analagously to J' in (2.) for comparing

average goodness of fit of several correlator-trackers in question,

by choosing that one minimizing the corresponding value of f.
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SUMMARY

A simple scoring rule for correlator-trackers is developed

in this report. Mathematical-logical justifications for the use

of this score are demonstrated. Detailed computations necessary

to implement the rule are exhibited, along with a determination

of its statistical distribution, a form of the chi-square.

In the second part of the study, numerical examples will

be given illustrating the suitability of the scoring technique

for use in surveillance in a real world setting and leading to

sensitivity analysis with respect to the key parameters involved

in correlation. Future work will concentrate on both extending

the applicability of the score and obtaining further analytic

properties.
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Appendix A

Matrix Inverse and Log Determinant

of a Positive Definite Matrix in

Prescribed Block Form

Let G = (Gi.) 1 be a given positive definite matrix in

block form with all Gii assumed square. Thus all Gii's are posi-

tive definite with G.T = G. etc.

Let G 1 d (A j) , with the Ai 's to be determined.1Jl~i,j in

Then

1. For 1 < i < j < n

n
Aji (SijtI- E A G )GP) (A.1)

k=i+l

assuming the sum is zero for i=n, where for any l<_i,j, k <n,

G ( ) - Gc(i) T
ik ki

For i= 1, compute for j= 1,2, j .- k:_n,

G() df (A.2)kj = Gkj

For i such that n>__i> 1, compute for j = 1, i+l, j< k< n.

(For i=n, let k=j =i=n.)

G "i) df Gj - Gi-) " Gi-i--I " -,)
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2. log det G = • log det (Gii)) . (A.4)
i=l

For i such that n > i > 1 compute G (i) for i+l > k > i.

- kj )ji

(For i=n, let k=j =i=n.)

The proofs of the above results easily follow by successively

applying the matrix and determinantal identities in Ref. [25],

Chapter 1, pp. 32, 33.
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Appendix B

An Approximation to MOW

Assume rank (B ) = b<(j). Define
i

i(j) 'df yi)j)T

S i Hi i(j)

where
SRj-1 -1 -1 T -1

H (j) -df _~)1R~j) 1 ,B~j).DCj)- .B~j)T ,R(j)-
1 i i ii i

Let
df

h. mineig (Cov(Hi))

h.. -df mineig Cov(R.)-- 'ji iJ

h.. f mineig (D(j))
hij2

Then, for any arbitrary given c > 0, if
(j) -E(Yi(J))-1

hi > (1/hij)mx0 (1i i 11 /'hj

then (see eq. (4.120))

0 < L.() .0 < E

Proof:

Note that by using matrix identities (Ref. [25], Chapter 1; see

also eq. (4.123))
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Cov(I Y.~j) H ) - - M 1. A~U).,~i)- (B-')

where (see eq. (4.117)0 ) C v H ) D ) . ( )
AM 8M.( +D(i)yl 8 () (B-2)

Then

Since

i i j

i i i Ai)

(in positive definite matrix ordering s~ense).

Now

0~½J M 0)
maxeig (R-~

i 1

= maxeig (DjCv( D(j + D(j)) DM~J)
i 1. . i

= maxeig (Cov(H i). DO) + I d)

= 1/Cmineig (Cov(H.).VD~j) + 1)

< 1/(h .h~ + 1) (B-5)

B-2



Noting that H. M.80 = 0, it follows that
i

H Cj)E(Y iC) ( H (J).BJ)-E(Hi) = 0 and thus combining (B-1)

(B-S)

0 Y (j) E(YiC0)))T (Cov- 1cYi0))-H .( )). (yJ)-E(Yi M)1: 1 -1 1t 1

(omitting the conditioning on QM )

< 0j~C) E(Yi (j)j 2 -maxeig (RMj- h.(i/(h ih ij2 M -I))I (j)-½,

i i

<- 1yi() E(Yi(j)i 2.(/(h il(hihi. 2 + 1)) (B-6)
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Appendix C

Flow Charts for Computations of the Score J'

The number of sensor systems is q, known and fixed.

At each time t., new raw data (possibly vacuous) Z. is ob-J J

served before Q(J) is determined. Z ( = ( k

k= 1.,,,q

For each sensor system k, at tj, m.k>0 is the known number of
j jk?-

data reports 9 observed. (When m = 0, data becomes
dY,j,k jk

missing, i.e., Z when m.m > k1 only at most one report can

correspond to each true target - the remaining are false alarms.)

Also, Zyjk is decomposed into a possible geolocation (target or

false alarm - not known) data component Z- which if non-

vacuous is rjk by 1, rjkŽl known, and a possible non-geolocation

target data component, Z-.k' which if nonvacuous, rules out the

associated geolocation component being a false alarm, and is of

dimension <b; C is the fixed known non-geolocation target attri-

bute set of b by 1 vectors, each representing a feasible evaluation

of b given attributes.

For each sensor system k, at time t., Bjk is known rjk

by m geolocation target measurement matrix, and Rjk is a known

corresponding rjk by rjk positive definite measurement error co-

variance matrix. m = dim (Xi) is known; Xi is unknown ith

target state parameter vector. See Eqs. (2.1) and (2.2) for further

explanations and other related definitions.

Prior to tY, partitioning Q(J-1), and target state parameter
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vectors, one-step predictions from the Kalman filter are available:

Xi;j-i,j' state estimator; and A ijlj " covariance matrix of exti-

mator error; i= 1,2,..

Also, available prior to t. are geolocation scores Li (jl)

i = 0,1,.. (i-O, corresponding to false alarm set: i> 1 corres-

ponding to 2th target track set, determined by QCJ)), non-geolocation

.attribute scores L (j-)p i = 1,2 ... possible Kalman filter pre-

dictions for H.i true b by 1 attribute vector of target i - as

Hi;j-l,j' Ai;j-l,j, etc.

Also available prior to t. are the overall geolocation target

data score, -2 log pr(Z+(0-1) IQ(J-1)), the overall false alarn

(geolocation) data score, -2 log pr(Z L (j-l) and the

overall non-geolocation target attribute score -2 log pr(Y-IQ

Following, the reception of new data Zj, based on all of the

old data ZOjl) and the new, combined into 2 O)P and based on

possibly old partitioning Q(jl), new partitioning Q(M) of )

is determined by the observer.

Once QM is determined, then the total data ZM can be

decomposed as QM = {Qi(J)li= 0, 1,2,...), where the ith track

set (target, for i >1, false alarms for i = 0) is

QiM = z0) Q I <<k<q}. The Ziak s are the same
= {iak1O<a<j, - -

as the Zk' s with the i's and y's replacing each other, except

for ZOak = ZOak = {Z I l•< W.< the false alarm set, where

f 0 known relative to 00). (All Z k's, as well as all.

Ziakl s, unless vacuous are, rjk by 1.)
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Some of the Zik 's may be vacuous (Zi. = ), in which case,

those are generally marked so, deleted from the set, and do not

contribute to the computations (actually contribute zero in value

to the various sums calculated). Relative to 0(j), i is formally

assumed known and Z iak = 2L--_ iak is the rk by 1 geo-

location data component and Y iak is the non-geolocation target

attribute data component - aijk by 1, Furthermore, random set

T = b.i bi }c{l, .. , b} is observed, and may

be vacuous, in which case a ijk = 0. Without loss of generality,

1<b jk'l <bij jk <b. Associated with the Yiak' s are measure-

ment matrix 8 iak and error covariance matrix R iak (see remarks

between eqs. (4.70) and (4.71), and eq. (2.3) and following discussion.)

Note also the notation! Z0(j) - (J) = {Zk10 <a <j}; false

alarm set up to tj; -= i i>1}, for the set of all
geolocation data Z (J) = {Z-iakl < <q; 0 <a <j (Ziak •') of track

set i; up to t., for all i>l, and Y(J) = {Yi(J)Ii >1}, for

the set of all non-geolocation data of track set i, Y i = iak

l<k<q; 0<a <j (Yiak ••0, up to tj, for all i>l.

For additional clarifications and definitions, see the main text,

especially subsection-o2 of the Analysis Section.

........ The.,gene.ralc.:qonvention.nassunedz,,in. these flow charts is that any-sum

whose. index.set -of:s-ummation is-the empty set .(ý), is'set equal to zerod.'.
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z(-1 d4. -Set Jo > 1.

Define j, as the first j >0 at

sampling time t., for which

(j-l) = 4 '• . Hence,

(j)
J1

Set j=j

Go to

0

Yes No

Form QJ) and hence Set Q(j) QO-l)

obtain corresponding Z (j) z (j-1

7. CJ) =1z +CJi),zo J),y(J') J "cQCJ)), zMJ) =

J j-Q~jI 1), zj -1))

is j> jl? -

Yes No

Thus Thus

z 10-l) + z (j-1) =(P and hence Cj 1 =Cj 2 =Cj 4=

GotoGt,-
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2 lg p (+ ()I~j)=o 2lgprZ (j)Q(j))=O -2 log pr(Y~j) IQ~')=

Store: -2 log pr(Z iQi)I

-2lg rZ0 iIQi) -2 log pyYjI~)

Compute:

J--2 log(j)

-2 log pr(

-2 log prZMIM

4

*~ replacej
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Geolocation Target Data

C Cj4 iaf {il< i i i z.1 ( & CijlUCi 2UCij31

= set of all track sets consisting of two or

more points which are obtained by breaking up

previous adjudged false alarms, given Q(J

This is equivalent to: Z+(jl) Z+

Si.e. are some previous track sets broken up?

Use old outouts INote that C j4 €

(L .I 0 ) for'

( Go to C7)

•iECj IUCj 2 UCj 3 UCj 4

-2 log pr (Z+ M)Qj)

= -2 log pr(Z+ (j-)iq(j-l))

+ • i

(ieCe U Cj 2UCj 3)

Arso store all L.(i)'s and

Kalman filter outputs,

Go to i
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-set of previous tvack sets which

will be nontrivially updated by

new data, given QMJ

Gos to't

C :5 
%3C-7



fcdf 0il<i•z(-1) M ii
Cj2 Ii1< & z (n j

= set of all previous track sets which will

be updated by predictions only (no new data),

given QM)9I

Yes No Set C.

G o t o 1 3 .
Go to

dn (C j
Cj 3 1 { li & zi M3 z =j (an)Z

set of all new (one point) track sets, given

QMJ

Yes No Ye Se"Cj

No 'StC J3

and C j4

Go to
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Inputs; Fo:

From before: Xi;j-j Ai;j-l,j si(j 1) s- I L I0.,Li(01)

At present: rjk known positive number, B.jk(rjk by m) for k such that Zij

Rjk (r-k by rjk positive definite), for k such that Zijk *
(z ij(Zijk EC; l<k < q such that Zijk 0 *}

S r. jk for i E Cjr

such Ithat

CZijk 

+ .)

s(j) = 1. 0-l) + Sx -

si1 ""

"ijk i.jk - lJ i

S.. >m (Go to

- eYes

.25D. -- B T R- 1
D. 3 jk jk jk

l<k <q
such thatZijk •

Ai.. = (Dij + Ai . 1,j) 1

= D .- (I -(I + D.A , - 1 A
aj m in ii 3i,J-i,')

A. =j-k SkR-- R - .lkB A ... Bl
k -jk- jk 3- ij 3jk

for 1.< kl k- <=q such that Zijk- ý 0, Z ijk..

log det E. = q log det Rjk

(such that

+ log det (Im + A3i,3-1,



0
Ilnputs for icj

lFrom before: Xi,j-1,j'Ai;j-1,j siO1  -L.)s L.~-'

At present: No inputs

(No r ik's, B jk's, R jk's. Zijk's)

s 1 ) (j0 1)

x.
i~jj i;j-1,j

Aj;j j = A;j _i,j

L.. = 0 ,j'

0Go to 2

28

j4

Yees4No

Got N1 Go to 6
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Gijk. ,k- '6 ,kk jk' +jk'Ai~j-l,j Tk

for 1 <k- 1,:q. such that Z..

7-iijV

For =j (G jjk-9 r)

l5 k' k-<q

zijk'
z i~k-

log det (z ..) and

-1df
(A j k k)

Appendix A 1 < k ,Pk-< q
may be use- such that
ful here z j z ijk-

A.. (I - A ~-joFi A i,j-l,j

m J1



L~j = si. log 2w + log det zi
ii i. i

T
L1 , "J 1iKAijk-k'ijk

(I < k,,k-'q
Ssuh that7

kZijk"'

L.. = L:. + L:.13 1)
I

i*C3' Go t°o_

L L + Lij

1 L + L

For each i Cj£

1 ~1JL i 0) ." > T ij.(a) , ?

where T.. is determined from

8. =.Pr(x 2 (j) >Tj6.

$.)1

for 0<8<1I, 8 small

•jiM•• is a fixed large number
Continue track set i Begin formally new track
Redefine C_. to be set: replace i by N+i.Irestr'icted to i such 3

Ithat Li(0) < <Ti:. (0) se -j',=

(GO toM o o



A +ABT -R1.
Xii 1Xi A OXJ Bi k GR k ijk

suchta
z

(Go to 271

such that

ijk *z . <Z-ijk-

GIo to 2

A 
N

"ijj3+1 =j+1~jj

A.. .= 0 A T .G..P.p,GT
v ,~+ j+1 i,jf, jk 33 3 i

(Goto2
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Inputs: iC C.j3

From before: L.0-l) = 01

Formally set at present: X= E(X ,jlj = COv(X..)

At present: rjkB jk(rjk by m) for k such that Z.ijk

Rjk (rjk by rjk positive definite) for k

such that Z ijk ý ý P

{Zijkl I Cj 2 ; lk<5.q such that Zi.k ,

1J lck~q j

(such- that

vijk 7 Zijk BjkE(Xi,j)

Yes No
Go to 2... o

C-C-14

For-each i a Cj2

Yes 
NoGo= 

i
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For each i £j4 (for given new QM

Let {Zi iO.c< a x<j, 1 <k <q such that Zik #6)

be formed out of at least two old track sets or

former false alarms. Fix j

Let a1  be the minimal value of o, for

jl 5.a <j such that Z. ,

-- I
Set a = a I

In @, 6, @ replace j

everywhere by a. Go to(

and loop through only up to,

and including, Q.

• .. .. No
a+1 < j ? N

Outputs:
Yes i

e 1 •1,1 ,j~l'i,i ,j+1'
L (. for i •Cj 4.Yes [ No L "OriZ 4

Return to j notationfGo to (•Go to 0
land loop and loop.,
|through, up through up (G toIto, and in- toon

cluding,' i3cluding,

Replace a by a+l

C-IS



0 0

S.• i.e., no previous false alarms

are destroyed and ZOj ={Zojk 1 <.q I ?

Yes J No

-0 
0 ) ?

For all k , l ý_ •k q I- I O
such that Z Ojk 0 ý: Yes/ No

Inputs: rjk known number ?_ 1

0jk known rjk by 1 -2 log pr(Z0 (J) IQ(j)
Mjk known positive definite1  = -2 log pr(Zo0 (-l) IQ(j-l))

rjk by rjk

fjk = card (Zojk)l known

ZOjk = fZojk. w=l,2,.., fjk) Go t

T (.oj) = zo0 (-i)?
Roik =k(Z •T-1i.e., Zo0 (-l)

= Ojkw jk)T.Mk(ZOjk,-eOjk)=
W=l but ZOj ý 0?

L = fjk.(rjk-log 2 +log det-. {Ojkk f.(r.lg

L YOk = Rk L Yes I No

-2 log), pr(.Zo0 (j)IQ(J) -2 log pr(Zo(J)IQ(i))

-2 log pr(Zo (J-l)Q(j-) L
Ojkk<q Ojk __ -that(

Ssuch that CZ -i k ý, )t

zI

\ ) " C-16



Q
SFix j. Set a- j,

Go to (9 and

everywhere replace by a

Is a such that there
are k's. <~k q

such that Z.Ok 0 0?

Yes No

-up to, and -)log pr(-including, -2ogp(0

I.Replace a by at+l'1

m+11 <j?

Yes No

Output :

-2 log pr(Zo0JMIQMj

Return to j notation
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Non-Geolocation Target Attribute Data

Nor Approximation Used?

• _..J ' Yes

Y 39

Yes ] No

Y [Thus, yo /

Yes No For all i such that Y ij 'L i (j) = =I
-2log pr (Y (j~lQ M) -2 log pYijk HiQi)p(
-2 log pr(Y(j-'l Qj-)) -2 M i jC c 1 < tkhaq

such tha\~Y ijk €/

Go to 2 log pr~(Yi) JQ3))

L for il 1
such that

Go to

C-18



19_

EKalman 
Filter

or Direct R egression?

Kalman Direct

Go to® o o®

for Attribute Used?

Yes No

Set:G toGot

Cj= Cj 2= j,

C-19



For all 1>1. such that Y(J M O; Hi CC

(j) M
Pr (Y ft MIHQ pr(Y. ikIHjQ)

1M=O (1 :.k ý-q ) al
ucih that

Li(j -2 log pr( i jI ~).rHi

40

-2 log prYi IQ (j Li (j

(such~ that)

C- 20



Kalmen Filter Approach foi Non-geolocation Target

Attribute Data Under the Normal Distributional Approximations

Go to I and everywhere replace:

m by b rjk by aijk

Zijk by Yijk Rjk by Rijk

Z+(j) by Y(J) Bjk by Bijk

z i(J) by Y i (j) by Ib

etc. G. by 03

L by L P. by 03

Li(j) by Li (j) Thus 27 becomes

L.j by Lij H.ij,j+l =H U
A ij,j+l 1 ijj

Cjl by Fjl Dij by Vij

etc. Go to

Xij by Hi, A.ij. e by Aijk- k* 0•

xi;j-l,j by Hi;j-l,j rij by .ij

Xi;jj by Hi;j,j Gijk'kibY Gijk' k'

etc.

Ai;jilj by Ai;j.lj Fij by Fij

etc.
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Y*

Also everywhere in "replace:

sJ by

s ij by Aij

Vijk by vijk"

Further evaluations:

For vijk' use (4.98).

If .>b:13

For Dij, use eqs. (4.93) (4.95).

For Aijkek* , use (4.91), (4.101), (4.102).

For log det (Rijk) ,use (4.103).

For Bi k Rikvijk ,use (4.96), (4.97).

For <b:
-T

For Bijk- Ai,jl,j 8 ijk- , use analogue of eq. (4.102).

For iTk.'Aijk-k1Bijk. * use eqs. (4.109) - (4.111).

For 8 ik Aijk-k-'vijl ,use eqs. (4.98), (4.109),

(4.112), (4.113).

When 0 is reached, skip to P and continue looping through

as usual.

When ® is reached and outputs deposited, resume old notation

again in 0, until next cycle into
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Direct Regression Approach to Non-geolocation Target Attribute

Data * Under Normal Distributional Approximations

4i (j) 6 i

Go to No b?

0 IYes

log det R = ( log det ( R )
i a=j ij

log det R log det Riklog ~ ~ <e R/' k < q\

I such that
Cyiak *

ak

log det Rik = log rb.
y=l

d =(j di = (1/r' 1 )
' /li <q, jl<azs<j,

such that Y iak '

and there is n, 1 <n;b
such that y=bik

( Tiak 

/

log det (I+b P(j)'Cov(H0)i

bb log(l + di(Avar(Hi)

log det Cov(Y i MIQ(j))

- log det Rj) + log det (Ib + p(J)'Cov(Hi))
i
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L 0), ( .j) log 2v + log det covCYicjI(j) Q )

ii) jot << - E(H.1 /\. ))

such that Y iak ý 0
and such that there
is n, l1 in.b, so that
Y=bia TiEak that]

Approximation desired minimizing
knowledge of E(Hi), Cov(Hi) ?

•- I Yes No

In computation

for Li below,

set E(Hi,b.ak ) = 0

and var(H. ) = +

L -- 0" (Y iak - E(H i ))2k

uch that
Si q0 ) b iakj)b a

(/((l/var(Hi,)) + di( )) ",

L. 0 0 + L1

for all i such that Y. (j) 0 *.

EGo to
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SUMMARY OF FLOW CHART INPUTS OUTPUTS

Summary of Time-Independent Quantitites

C is a known set of possible non-geolocation target attributes.

Card (C) - a. Each element of C is a b by 1 vector of values
(

such as (true) hull length, flag color, identification, etc.

Fixed number of sensor systems operating is q, though some

at times may fail to collect data.

m is the common dimension of each target state parameter vec-

tor; n is the dimension of the driving noise vector Ceq. (2.1)).

If normal approximations are used for the non-geolocation tar-

get attributes:

E(Hi), Cov(Hi) are the mean and covariance matrix of variability

or randomness for any target i , and it is assumed their values are

not dependent on i (nor on j).

If normal approximations are not used for the non-geolocation

target attributes:

pr(Hi) the prior probability function of Hie C is known;

it is usually assumed to be uniform: pr(Hi) = 1/a for all Hie C,

where a - card(C). (pr(Hi) does not depend on j.)

Summary of Previous Outputs for Data

Partitioning Q(0I) = {Qo(J-l), Q1 (J-), ... }, where

Q1 (jil) is the perceived (target, if i> 1, false alarm, if

i = 0) ith track set consisting of data Z.(j-1) = { k 0< cj,

l< kq, such that Zi0k .
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Kalman filter outputs: X
(m by 1) (m by m positive definite)

;jlj i;j-lj . (The last two are not re-

(b by 1) (b by b positive definite)

quired if the Kalman filter - normal approximation procedure is not

used for the non-geolocation target attributes.)
(

Lj =-2 log pr i 1)) for i>0; L~ (j-l) for i> 1;

Li(ji) = -2 log pr(Yi(J-1)IQ(J')), for i>O;h,

-2 log 2 = ((log (i(J-l) ( = Li(j1));
i=l, 2,..

-2 log pr(Y (j-1)IQ(j-1)) = L (Li( )) 1

J(Q(i-l) Oz(-l)) = -2 log pr(Z+(j-1)IQ(j-l))

-2 log pr(Z 0(J-l)IQCj-l))

-2 log pr(Y(j-1) IQ(j-l))

Summary of Data Inputs at

Sampling Time t. but Before New

Partitioning Q(j)is carried out

Consider sensor system k, k = 1,.., q:

If no new data at all arrives, j=

If some new data arrives Z. 0 *, and for each sensor k

which obtains data, mjk > 1 is the iiumber of data reports received;
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Z.- (2 k)j ,j,k

Y=l,.. Om jk

k-, .. ,q

(where above, set ZEjk - for those k's for which mjk = 0).

The Yth report received by sensor k at t. is , l:=•mjk

l Yjk

Z9jk is rjk by 1 geolocation data vector

(r > 1)

zk is ajk by 1 non-geolocation data target attribute

vector

(0 _ aYjk :S b )

It is possible for a given Y. l-'Y----jk P for mjk-' 1, to be

such that Z'jk = or Zjk = €, but not both (otherwise

mjk = 0).

Zjk * iff ayjk = 0.

Zyjk contains as components, typically measured positions,

velocities, etc., from sensor system k at tj for report

Ztjk contains as components, a given subset Tyik (of

size a Yjk) of a fixed set of b attribute values.
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%4

Typically, this could be

& number of radars on-board
Zy.k I hull length

(flag color/I

where the total attribute set is (number of radars on-board,

identification, shape, hull length, flag color)

(b - S here).

Also given for eaplh-sensor k is Bjk. rjk by m measurement

matrix.

Typically, if the ith target state parameter vector is

(m - 4)

x-pos, at t.

y-pos, at t.

XiJ x-vel. at t.

y-vel. at t.

and only x- and y- positive measurements can be made at t.

by sensor k, ..... hen
( observed x-pos. at t

dYjk (observed y-pos. at t1

and

B (1 0 00O (2 by 4)
(1 0100)

(rjk = 2) (see eq. (2.2))

Also given is the measurement error covarlance matrix.

Rjk (rjk by rjk positive definite) is typically obtained

C-28



a

approximately as R T where 0j is a matrixaproimtey s jk = •jk'Pjk*'•jk '•jk

of Jacobians of the transformation from sensor coordinate to

cartesian coordinate space, and Pjk is the covariance matrix of

measurement error of sensor system k at t. for its natural

(sensor) coordinate system. (See also eq. (2.2).)

Also, for each sefhsor system k, is given ejk (r k by 1),

the mean of the false alarm dispersion ; Mjk the corresponding

(rjk by rjk) positive definite covariance matrix.

Also, the common target motion transition matrix #j

(m by m) driving noise coefficient matrix G. (m by n) and

driving noise covariance matrix P. (n by n positive definite)

are all'known. (See eq. (2.1).)

If required (usually by a fixed procedure ), E(Xij) (m by 1)

and Cov(X)ij (m by m positive definite) will be known, but not

dependent on i.

Similarly, for non-geolocation attribute data, given are:

BBY kk 1

jyjkayj)

Byjkn = (0,.., O 1, 0, .. , 0)

where the 1 occurs in the b yjkn position, 1 1 n= ayjk,

where 1 < byjkl ' b Yjk2.. <byjka jk s b and
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IT R

T Yjk" {bYjkl, byjk 2, .. , byka jI

The corresponding measurement error covariance matrix is

Ryjk = (L rb..-• )yj

(a yjk by a yjk positive definite)

Ryjk is a submatrix of fixed by by b positive definite covariance matrix

rj k

RR

which is predetermined.

If normal approximations are not used for the non-geolocation

target attributes:

The discrete probability function pr(YYjkIHi) is assumed known

for all outcomes Yyjk (ayjk by 1) and Hi (b by 1), given selection

set T jk. The Hi's are £ C and the Y jk's are subvectors

of vectors e C.
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4

Quantities Known at tj

Only After Partitioning _(j) is Carried Out

Q(J) - {Qo((j) Q19 ), } known, where Qi(j) - Zi(j)

fjk the number of false alarms for sensor system k at tj

is known and index i *representing target i is now known; all

relative to Q(J).

Following rearrangements,

Zj (Zijk)
i=0, 1 , 2,...
k=i, . . ,q
for Zijk

=i :'iý ('-it~

for some Y , l • <mjk.

Zijk is rjk by 1 geolocation data vector assigned to

track set i .

Yijk is aijk by 1 geolocation data target attribute vector

assigned to track i .

Zijk and/or Yijk may be vacuous; YOjk = * always.

Thus, Tijk, 8 ijk, Rljk become determined; similarly for

Pr(YijklHi)•

The total data Z(j) up to t. can be broken up two different

ways:
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z(j) {z+ (J), ZOO)0  yO)}

a {Zi M i = O, ,l 2 ...

where

z-+(j) - {ziQ~li = 1, 2, ... }

zi(J) Ziak(O I a 1 j; 1 ;L k 1 q, Z ik

M geolocation data for track set i up to tj ,

ZoJ) = {ZiakwI <a < < k S. q, 1 < w 1 fak

Ziak 0 ý}

= false alarm data up to t. ,

Y(M). {Y i(Jli= 1, 2, ..1

Yi() = {Yiakl 0 < a < j ; 1 < k • q, Yiak }

= non-geolocation attribute data for track set i

up to t .

In turn, these determine sets Cjl' Cj2v Cj 3  Cj 4 ZA1  2

j53 7j4  (the last four are not required, if the Kalman filter-

normal approximation procedure is not used for the non-geolocation

target attributes). (See Flow boxes 7 - 10 for definitions.)

Note also the notation:

1ij - (Zijk)l;k<q similarly for Yij

sucl that
zijk #
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